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ABSTRACT

ATTACKS AND COUNTERMEASURESIN COMMUNICATIONS AND POWER NETWORKS

Report Title

The threat of malicious network attacks has become significant ever since networking became pervasive in our life. 
When adversaries have enough control over the network measurements and control procedures, the effect of attacks 
can be as detrimental as the breakdown of the whole network operations. This dissertation studies possible 
adversarial effects under certain protection strategy, the conditions under which attacks can be detected, and 
protection strategies to render attacks detectable. Specifically, attacks on two types of networks are considered 
communications networks and power networks.



First, we consider an attack on communications networks, where a pair of nodes are suspected to belong to the chain 
of compromised nodes used by the adversary. If the pair belongs to the compromised chain, it forwards attack 
packets along the chain, and thus there should exist an information flow between the pair. Detection of an 
information flow based on node transmission timings is formulated as a binary composite hypothesis testing. An 
unsupervised and nonparametric detector with linear complexity is proposed and tested with real-world TCP traces 
and MSN VoIP traces. The detector is proved to be consistent for a class of nonhomogeneous Poisson processes. 



Secondly, the topology attack on power networks is studied. In a so-called man-in-the-middle topology attack, an 
adversary alters data from certain meters and network switches to mislead the control center with an incorrect 
network topology while avoiding detection by the control center. A necessary and sufficient condition for the 
existence of an undetectable attack is obtained, and countermeasures to prevent undetectable attacks are presented. It 
is shown that any topology attack is detectable if a set of meters satisfying a certain branch covering property are 
protected from adversarial data modification. The proposed attacks are tested with IEEE 14-bus and IEEE 118-bus 
system, and their effect on real-time locational marginal pricing is examined.



Lastly, a new attack mechanism aimed at misleading the power system control center about the source of data attacks 
is proposed. As a man-in-the-middle state attack, a data framing attack is proposed to exploit the bad data detection 
and identification mechanisms at the control center. In particular, the proposed attack frames normal meters as 
sources of bad data and causes the control center to remove useful measurements from the framed meters. The 
optimal design of data framing attack is formulated as a quadratically constrained quadratic program (QCQP). It is 
shown that the proposed attack is capable of perturbing the power system state estimate by an arbitrary degree using 
only half of the critical measurements. Implications of this attack on power system operations are discussed,

and the attack performance is evaluated using benchmark systems.
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Jinsub Kim, Ph.D.

Cornell University 2014

The threat of malicious network attacks has become significant ever since net-

working became pervasive in our life. When adversaries have enough control over

the network measurements and control procedures, the effect of attacks can be as

detrimental as the breakdown of the whole network operations. This dissertation

studies possible adversarial effects under certain protection strategy, the condi-

tions under which attacks can be detected, and protection strategies to render

attacks detectable. Specifically, attacks on two types of networks are considered:

communications networks and power networks.

First, we consider an attack on communications networks, where a pair of nodes

are suspected to belong to the chain of compromised nodes used by the adversary.

If the pair belongs to the compromised chain, it forwards attack packets along the

chain, and thus there should exist an information flow between the pair. Detection

of an information flow based on node transmission timings is formulated as a binary

composite hypothesis testing. An unsupervised and nonparametric detector with

linear complexity is proposed and tested with real-world TCP traces and MSN

VoIP traces. The detector is proved to be consistent for a class of nonhomogeneous

Poisson processes.

Secondly, the topology attack on power networks is studied. In a so-called man-

in-the-middle topology attack, an adversary alters data from certain meters and

network switches to mislead the control center with an incorrect network topology
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while avoiding detection by the control center. A necessary and sufficient condition

for the existence of an undetectable attack is obtained, and countermeasures to

prevent undetectable attacks are presented. It is shown that any topology attack

is detectable if a set of meters satisfying a certain branch covering property are

protected from adversarial data modification. The proposed attacks are tested with

IEEE 14-bus and IEEE 118-bus system, and their effect on real-time locational

marginal pricing is examined.

Lastly, a new attack mechanism aimed at misleading the power system control

center about the source of data attacks is proposed. As a man-in-the-middle state

attack, a data framing attack is proposed to exploit the bad data detection and

identification mechanisms at the control center. In particular, the proposed attack

frames normal meters as sources of bad data and causes the control center to re-

move useful measurements from the framed meters. The optimal design of data

framing attack is formulated as a quadratically constrained quadratic program

(QCQP). It is shown that the proposed attack is capable of perturbing the power

system state estimate by an arbitrary degree using only half of the critical mea-

surements. Implications of this attack on power system operations are discussed,

and the attack performance is evaluated using benchmark systems.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Overview

Since the advent of computer networks, networks among people and devices have

grown rapidly in their sizes and capabilities. Nowadays, the majority of people

are connected to cellular or computer networks most of time, and our reliance

on communications networks has never been more tremendous. In addition to

communications networks, power networks assume an extremely crucial role in

supporting our daily life: power networks enable reliable delivery of electricity to

our homes, work places, and physical infrastructures.

For proper operations, a network has to be protected from possible attacks. As

the role of networks became important, potential effects of network attacks also

became significant. For instance, an adversary in a data network may hack into a

server to attain unauthorized data thereby possibly causing privacy data leakage.

In power networks, its cyber-physical nature allows an adversary to create even

worse consequences. For instance, an adversary may alter meter data to mislead

the control center about the current operating condition. Such an attack may

possibly leads to breakdown of power plants, electricity price perturbation, and

even a blackout in the worst case. Such attacks on networks have been continuously

reported thereby proving the presence of threats.

Fortunately, many attacks leave traces in the network measurements (e.g., net-

work log files, measurements from deployed sensors.) However, it is nontrivial how

to detect presence of an attack based on the measurements. Smart adversaries will

1
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attempt to hide their traces, and it is indeed possible if they have enough controls

on the network or the measurements. Furthermore, sometimes, an attack may

not leave a strong signature in the network measurements. Therefore, a detection

algorithm needs to be carefully designed, and the fundamental limitation due to a

strong adversary needs to be studied. This dissertation studies protection strate-

gies to render attacks detectable and conditions under which a smart adversary

can launch an attack without leaving any detectable trace.

We first consider an attack on communications networks in Chapter 2. We

consider the so-called stepping stone attack [1], in which the attacker uses a chain

of compromised nodes to access the victim. This strategy is often used to confuse

the intrusion detection system about the adversary’s location. If the adversary

compromises a pair of supposedly independent nodes and use them as stepping

stones to the victim, there should exist information flows (associated with the

attack) between the pair. Given suspect nodes for stepping stones, detection of

information flows can be applied to trace back the stepping stone chain. We

formulate the problem as a binary composite hypothesis testing and present an

unsupervised and nonparametric detection algorithm.

Then, we move to attacks on power networks in Chapter 3. In a power network,

the control center periodically collects measurements from meters and sensors de-

ployed throughout the network. These measurements are used in estimating the

real-time system state and the network topology. We study a specific type of data

attack that alters part of the measurements to mislead the control center with an

incorrect network topology. Such attacks may cause the control center to believe

in false contingency information or delay preventive actions when important trans-

mission lines are tripped. Unless the adversary can control a sufficient number of

2
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measurements, an attempt to disturb the topology estimate causes inconsistency

among the measurements, and this anomaly can be well detected by the legacy

bad data test. We provide a necessary and sufficient condition under which an

attack can be successful without causing any detectable anomaly and present con-

struction of undetectable attacks. Then, the necessary and sufficient condition is

used to develop a graph-theoretical meter protection strategy.

In Chapter 4, a data framing attack on power system state estimation is pre-

sented. The framing attack is a new approach of data attack on state estimation

which misleads the control center that certain normally operating meters are re-

sponsible for generating biased measurements. The bad data identification rule

falsely identifies the data from these meters as bad and remove them from system

state estimation. Such an attack may degrade the accuracy of state estimation

and even make the network vulnerable to arbitrary perturbation of the state esti-

mate. We formulate the optimal design of the framing attack as a quadratically

constrained quadratic program and show that the framing attack needs to alter

only half of the critical set of measurements to perturb the state estimate by an

arbitrary degree. The proposed attack is evaluated with the IEEE 14-bus and

118-bus networks.

The following three sections give more details about related works and our

contributions in the aforementioned three topics.

1.2 Detection of Information Flows

Detection of information flows between a pair of nodes has been studied in the

context of network intrusion detection, especially in the detection of interactive

3
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stepping-stone attacks [1]. The use of only transmission timing measurements for

detection is motivated by the fact that packets involved in an attack can be easily

encrypted. Even though transmission timings of nodes can be easily monitored,

detecting information flows based on timing is non-trivial. One main source of

difficulty is the presence of noise-like epochs. When an information flow exists

between the two nodes, the two nodes may have transmissions that do not belong

to the flow. They may multiplex transmissions of other flows that go through only

one of the two nodes, or intentionally superpose dummy transmissions to avoid

detection. We refer to such transmissions as chaff transmissions.

1.2.1 Related Works

Donoho et al. [1] were among the first to consider the flow model with a uniform

delay bound. Following their model, many algorithms have been proposed to

detect a flow with a delay constraint. As an active detection scheme, Wang et

al. [2] proposed a watermark-based detector which embeds watermarks by slightly

adjusting transmission timings of a node; if the same watermarks are detected in

another node, two nodes are claimed to have flows between them. Their work was

followed by a large number of watermark-based detectors [3–10]. The insertion

of watermarks, however, requires the ability of the detector to modify traffic at

different locations of the network, which may not be possible in practical situations.

If the network traffic cannot be modified to facilitate detection, the problem is

referred to as passive flow detection, and it is the problem of our interest. In pas-

sive detection, a detector collects transmission timing measurements and analyzes

them to draw a conclusion about presence of a flow. Many research efforts have

been made to develop effective passive detectors. Zhang et al. [11, 12] proposed
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matching-based algorithms. However, they assumed that only one of two nodes

can insert chaff transmissions, and their algorithms are vulnerable to chaff inser-

tion at both nodes. Donoho et al. [1] proposed a wavelet analysis with a claim that

it can detect a flow in chaff if the chaff part is independent of the flow part and

the sample size is sufficiently large. Blum et al. [13] presented a counting-based

method which was shown to be able to detect a flow in chaff if the fraction of

chaff is small enough. Under the Poisson traffic assumption, they characterized

the sufficient sample size for satisfying a given false alarm probability constraint.

However, their method may result in high miss detection probability if chaff trans-

missions are bursty. He and Tong [14] proposed a matching-based detector with

better chaff tolerance and characterized the maximum tolerable fraction of chaff

under the homogeneous Poisson traffic assumption. Their approach requires choos-

ing a detection threshold which is a function of the parameter of the underlying

Poisson traffic. When the traffic deviates from the Possion model, the detection

algorithm is not always robust. The approach in [14] can be applied to the general

traffic if a training data with a sufficiently long time span is available. Coskun and

Memon [15, 16] presented detectors based on random projection of transmission

processes. Similar to [14], their methods also require choosing an appropriate de-

tection threshold, which can be successful only if a large volume of training data

or an accurate parametric model is available.

1.2.2 Contributions

Our results include three parts: a nonparametric passive detection algorithm for

unidirectional or bidirectional flows, the related performance analysis, and exper-

iments with synthetic and real data. In developing an algorithm, our main contri-

5

20



bution is a new nonparametric technique that does not rely on knowledge of traffic

distribution; nor does it require a training data for either hypothesis. The key idea

lies in a particular transformation of the measurements that leads to distinct sta-

tistical behaviors under two different hypotheses. The proposed detector does not

assume stationarity of traffic and hence is applicable in time-varying traffic condi-

tions. Furthermore, it is memory-efficient and has linear computational complexity

with respect to the sample size thereby making real-time inference feasible.

In algorithm analysis, we aim to give theoretical justifications for the proposed

approach. To this end, we establish the consistency property of the proposed

detector for a class of non-homogeneous Poisson traffic. Even though the detector is

analyzed only for non-homogeneous Poisson traffic, the intuition behind it suggests

that it may perform well on the traffic with more general distribution.

The performance of our detector is evaluated using synthetic Poisson traffic,

LBL TCP traces [17], and real-world measurements from MSN VoIP sessions, and

comparison with other passive detectors is provided. The use of synthetic data

allows us to examine the trade-offs between miss detection and false alarm prob-

abilities using Monte Carlo simulations. LBL TCP traces and MSN VoIP traces

are of course not guaranteed to satisfy the assumptions made in our algorithm

analysis, and our results indicate a level of robustness.

1.3 Topology Attack of a Power Grid

Liu, Ning, and Reiter [18] appear to be the first to introduce the concept of data

injection attack (also referred to as malicious data attack) of a power grid. As-

suming that the attacker is capable of altering data from a set of meters, a similar
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scenario assumed in our problem setting, the authors of [18] show that if the set

of compromised meters satisfies certain condition, the adversary can perturb the

network state by an arbitrarily large amount without being detected by any detec-

tor. In other words, the data attack considered in [18] is undetectable. The main

difference between [18] and our work is that the attacks considered in [18] perturb

only the network state, not the network topology. It is thus most appropriate to

refer to attacks in [18] and many follow-ups as state attack, in distinguishing the

topology attack considered in our work.

1.3.1 Related Works

The work in [18] is influential; it has inspired many further developments, e.g.,

[19–22] and references therein, all focusing on state attacks. A key observation

is made by Kosut et al. in [23, 24], showing that the condition of non-existence

of an undetectable attack is equivalent to that of network observability [25, 26].

This observation leads to graph theoretic techniques that characterize network

vulnerability [24]. The condition to be presented in Chapter 3 on the non-existence

of an undetectable topology attack mirrors the state attack counterpart in [24].

The problem of adding protection on a set of meters to prevent undetectable

state attacks was considered by Bobba et al. [19]. We consider the same problem in

the context of topology attack. While meter protection problem for state attacks

is equivalent to protecting a sufficient number of meters to ensure observability

[19,24], the corresponding problem for topology attacks is somewhat different and

more challenging.

The problem of detecting topology error from meter data is in fact a classical

7

22



problem, casted as part of the bad data detection problem [27–29]. Monticelli [30]

pioneers the so-called generalized state estimation approach where, once the state

estimate fails the bad data test, modifications of topology that best represent the

meter data are considered. Abur et al. [31] extend this idea to the least absolute

value state estimation formulation, and Mili et al. [32] apply the idea to the state

estimation with the Huber M-estimator. Extensive works followed to improve

computational efficiency, estimation accuracy, and convergence property over the

aforementioned methods (e.g., see [33–35] and references therein).

Finally, there is a limited discussion on the impact of a malicious data attack on

power system operations. Should state estimates be used in closed-loop control of

the power grid, such an attack may cause serious stability problems. The current

state of the art, however, uses state estimates for real-time dispatch only in a

limited fashion. However, state estimates are used extensively in calculating real-

time locational marginal price (LMP) [36]. Thus, attacks that affect state estimates

will affect the real-time LMP calculation [37–39]. The way that a topology attack

affects LMP is significantly different from that of a state attack. We demonstrate

that a topology attack has significant impact on real-time LMP.

1.3.2 Contributions

First, we characterize conditions under which undetectable attacks are possible,

given a set of vulnerable meters that may be controlled by an adversary. To this

end, we consider two attack regimes based on the information set available to the

attacker. The more information the attacker has, the stronger its ability to launch

a sophisticated attack that is hard to detect.
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The global information regime is where the attacker can observe all meter and

network data before altering the adversary-controlled part of them. Although it

is unlikely in practice that an adversary is able to operate in such a regime, in

analyzing the impact of attacks, it is typical to consider the worst case by granting

the adversary additional power. We present a necessary and sufficient algebraic

condition under which, given a set of adversary controlled meters, there exists an

undetectable attack that misleads the control center with an incorrect “target”

topology. This algebraic condition provides not only numerical ways to check if

the grid is vulnerable to undetectable attacks but also insights into which meters to

protect to defend against topology attacks. We also provide specific constructions

of attacks and show certain optimality of the proposed attacks.

A more practically significant situation is the local information regime where

the attacker has only local information from those meters it has gained control.

We present that under certain conditions, undetectable attacks exist and can be

implemented easily based on simple heuristics.

Secondly, we study conditions under which any topology attack can be made

detectable. Such a condition, even if it may not be the tightest, provides insights

into defense mechanisms against topology attacks. We show that if a set of meters

satisfying a certain branch covering property are protected, then topology attacks

can always be detected.

1.4 Framing Attack on State Estimation

In power system state estimation, it is well known that bad data identification

rules may mistakenly identify good data entries as bad and remove them [40, 41].
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We study how such an inherent weakness of the bad data test can be exploited by

adversaries.

1.4.1 Related Works

We consider a man-in-the-middle attack, where an adversary can alter part of meter

measurements such that the control center is misled with the partially corrupt

measurements.

In [18], Liu, Ning, and Reiter presented perhaps the first man-in-the-middle

(MiM) attack on the power system state estimation where an adversary replaces

“normal” sensor data with “malicious data.” It was shown that, if the adversary

could gain control of a sufficient number of meters, it could perturb the state

estimate by an arbitrary amount without being detected by the bad data detector

employed at the control center. Such undetectable attacks are referred to as covert

data attacks.

There is an extensive literature on covert data attacks, following the work of

Liu, Ning, and Reiter [18]. While the data framing attack mechanism proposed

here is fundamentally different, insights gained in existing work are particularly

relevant. Here, we highlight some of these ideas in the literature.

The explicit link between covert attack on state estimation and system ob-

servability was made in [19, 23]. Consequently, classical observability conditions

[25, 26, 42] can be modified for that for covert attacks and used to develop meter

protection strategies [19, 24, 43–46]. A particularly important concept is the no-

tion of critical set of meters (or critical measurements) [26, 47, 48]. In assessing

the vulnerability of the grid, the minimum number of adversary meters necessary

10

25



for a covert attack was suggested as the security index for the grid [20, 24]. Sub-

sequently, meter protection strategies were proposed in [21, 22] to maximize the

security index under the protection resource constraint.

The framing attack strategy considered here relies on bad data identification

and removal techniques that have long been subjects of study [40,41,47,49,50]. See

[51, 52] and references therein. Typically, the residue vectors in normalized forms

are widely used as statistics for the bad data test [40]. In particular, Mili et al. [50]

proposed a hypothesis testing method, in which the set of suspect measurements

are determined by the residue analysis in [40]. The use of non-quadratic cost

functions in state estimation was also studied to enhance the bad data identification

performance. Especially, the weighted least absolute value estimation [53–56] and

the least median of squares regression [57,58] were considered as alternatives with

comparably good performance. In this dissertation, we take the residue analysis

in [40] as a representative bad data test and analyze the effect of the framing

attack. However, the same analysis is applicable to general bad data tests.

Detection of data attacks on state estimation, referred to as state attacks, has

been also studied in various frameworks. Kosut et al. [24] presented a generalized

likelihood ratio test for detection. Morrow et al. [59] proposed the detection mech-

anism based on network parameter perturbation which deliberately modifies the

line parameters and probes whether the measurements respond accordingly to the

modification. Distributed detection and estimation of adversarial perturbation was

also studied in [60]. In an effort to minimize the detection delay, the attack detec-

tion was also formulated as a quickest detection problem, and modified CUSUM

algorithms were proposed [61–63].
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1.4.2 Contributions

We propose a data framing attack on power system state estimation. Specifi-

cally, we formulate the design of optimal data framing attack as a quadratically

constrained quadratic program (QCQP). To analyze the efficacy of the data fram-

ing attack, we present a sufficient condition under which the framing attack can

achieve an arbitrary perturbation of the state estimate by controlling only half

of the critical set of meters. We demonstrate with the IEEE 14-bus and 118-bus

networks that the sufficient condition holds in critical sets associated with cuts.

The optimal design of framing attack is based on a linearized system. In prac-

tice, a nonlinear state estimator is often used. We demonstrate that, under the

nonlinear measurement model, the framing attacks designed based on linearized

system model successfully perturb the state estimate, and the adversary can con-

trol the degree of perturbation as desired.

1.5 Organization

In Chapter 2, we consider detection of an attack-associated information flow in

communications networks. Specifically, the problem is formulated as detection of

an information flow based on timing measurements. We first start with a simpler

case of detection with a parametric flow model. Then, we present an unsupervised

and nonparametric flow detector. The detector is proved to be consistent for a

class of non-homogeneous Poisson traffic model. Lastly, the detector is tested and

compared with other benchmark techniques using real-world TCP and VoIP traces.

From Chapter 3, we consider data attacks in power networks. A data attack
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aimed at perturbing the topology estimate of the control center is studied. We first

study the attack for an adversary with global information. A necessary and suffi-

cient condition for an undetectable topology attack is presented, and the condition

is used to construct a simple graph-theoretical meter protection strategy. Then,

we consider an adversary with local information. An undetectable local attack is

presented and tested with the IEEE 14-bus and 118-bus networks.

In Chapter 4, we study a data framing attack on power system state estimation.

We present a new attack approach, which alters the adversary-controlled measure-

ments deliberately such that the bad data detection and identification rule falsely

removes measurements from normally operating meters while retaining adversari-

ally altered measurements. We first present the main idea of the attack and then

provide the optimization framework for the attack design. Controlling only half of

a critical set of meters, the proposed attack is shown to be able to perturb the state

estimate by an arbitrary degree. The numerical results with the IEEE benchmark

networks are provided.

Finally, Chapter 5 provides concluding remarks and comments on future works.
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CHAPTER 2

DETECTION OF INFORMATION FLOWS

2.1 Introduction

We consider the problem of detecting information flows through a pair of monitored

nodes as illustrated in Fig. 2.1. In particular, given the measurements of transmis-

sion timings from the monitored nodes, we are interested in determining whether

the two monitored nodes are engaged in relaying packets of certain information

flows (the alternative hypothesis), or they are merely transmitting independently

(the null hypothesis). The network of our interest can be either wireless or wired

as long as transmission timings can be measured.

The generic problem of flow detection arises from a number of practical applica-

tions, especially in the context of information forensics, network surveillance, and

anonymous networking. For example, in the so-called stepping-stone attack [1] in

a network, an adversary may attack a node by compromising a sequence of nodes

that serve as stepping stones. When the attacker is involved in an interactive ses-

sion (e.g., SSH), a flow of packets travel through a chain of stepping stones. By

Transmission monitor

Transmission epochs:

N1N1

N2

N2

Figure 2.1: In the above wireless network, the transmission timings of two nodes,
N1 and N2, are recorded. The horizontal axis is the time axis, and arrows represent
packet transmissions at different time points. As illustrated, packets of certain
information flows may travel through N1 and N2.
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detecting the presence of unexpected flows through monitored nodes, the network

owner can alert the possibility of an attack. Other applications include the detec-

tion of wormhole attack [64] in which a set of colluding nodes divert a valid network

flow through a “wormhole tunnel.” Understanding the problem of flow detection

is also valuable for the design and assessment of anonymous networks [65, 66].

We restrict ourselves to the use of timing measurements only. Such a restriction

is of course unnecessary because there are often other information available such as

source-destination addresses, packet statistics, etc.; a detector should incorporate

such side information. We choose to focus exclusively on the use of timing informa-

tion for two reasons. First, timing can only be distorted but cannot be hidden by

the transmitter, and its measurements can be obtained by simple devices. In con-

trast, source-destination addresses and packet characteristics can be masked using

standard techniques in anonymous networking [66]. Second, timing is a fundamen-

tal traffic characteristic. It is therefore useful to understand the extent that timing

reveals the presence of information flows. Furthermore, any side information, when

incorporated properly, will enhance the performance of techniques based solely on

timing information.

Even though transmission timings of nodes can be easily monitored, detect-

ing information flows based on timing measurements is non-trivial, partly because

of non-stationary traffic characteristics: transmission timings of nodes often have

time-varying intensities, and they may be bursty when interactive users are in-

volved. Moreover, in general, it is difficult to obtain an accurate parametric model

for the monitored traffic, especially when there is no prior knowledge about the

nature of the traffic and no training data available. The presence of noise-like

epochs is another source of difficulty. When an information flow travels through
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two nodes, the two nodes may have transmissions that do not belong to the flow.

They may multiplex transmissions of other flows that go through only one of the

two nodes, or intentionally superpose dummy transmissions to avoid detection. We

refer to the epochs of such transmissions as chaff epochs.

It is easy to see that, if a node can arbitrarily delay packets in a flow, timing

information is insufficient for detection. For latency-sensitive applications such

as VoIP, multimedia streaming, etc., however, packets must satisfy certain end-

to-end delay constraints, which make the presence of such flows detectable. For

instance, VoIP applications require end-to-end delays to be bounded above by 150

msec [67]. We will consider the constraint that flow packets should satisfy the

end-to-end delay constraint of ∆ seconds.

2.1.1 Summary of Results and Organization

Our results include three parts: a nonparametric flow detection algorithm for unidi-

rectional or bidirectional flows, the related performance analysis, and experiments

with synthetic and real data. In developing an algorithm, our main contribution is

a new nonparametric technique that does not rely on knowledge of traffic distribu-

tion; nor does it require a training data for either hypothesis. The key idea lies in

a particular transformation of the measurements that leads to distinct statistical

behaviors under two different hypotheses. The proposed detector does not assume

stationarity of traffic and hence is applicable in time-varying traffic conditions.

Furthermore, it is memory-efficient and has linear computational complexity with

respect to the sample size thereby making real-time inference feasible.

In algorithm analysis, we aim to give theoretical justifications for the proposed
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approach. To this end, we establish the consistency property of the proposed

detector for a class of non-homogeneous Poisson traffic.

The performance of our detector is evaluated using synthetic Poisson traffic,

LBL TCP traces [17], and real-world measurements from MSN VoIP sessions, and

comparison with other benchmark passive detectors is provided. LBL TCP traces

and MSN VoIP traces are of course not guaranteed to satisfy the assumptions

made in our algorithm analysis, and our results indicate a level of robustness.

The rest of the chapter is organized as follows. Section 2.2 gives the notations

and definitions employed throughout the chapter and formulates flow detection

as a binary composite hypothesis testing problem. In Section 2.3, we consider

the simpler case where the parametric model of the traffic is available. Then,

Section 2.4 presents a nonparametric flow detection algorithm and its consistency

property. In Section 2.5, the proposed detector is evaluated using synthetic Poisson

traffic, LBL TCP traces, and MSN VoIP traffic. The proofs of theorems are given

in Section 2.6.

2.2 Mathematical Formulation

This section introduces notations and definitions and formulates flow detection as

one of binary composite hypothesis testing.
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2.2.1 Notations and Flow Models

Transmission timings of each node are modeled as a point process on [0, ∞), and

detectors begin recording the timings at time 0. Bold upper-case letters (e.g., S)

denote point processes, and bold lower-case letters (e.g., s) denote their realiza-

tions. S(i) represents the ith epoch (i.e., the time of the ith transmission) of S, and

s(i) is its realization. The upper-case script letter S denotes the set of epochs in

the realization s: S , {s(i), i ≥ 1}. In addition, we define a superposition operator
⊕

: given two increasing sequences (ai)
∞
i=1 and (bi)

∞
i=1, (ai)

∞
i=1 ⊕ (bi)

∞
i=1 = (ci)

∞
i=1,

where ci is the ith element of the sequence of all the elements of (ai)
∞
i=1 and (bi)

∞
i=1

ordered in the increasing order.

First, we define a unidirectional flow as follow.

Definition 2.2.1 An ordered pair of point processes (F1, F2) forms a unidirec-

tional flow, if for any realization (f1, f2) there exists a bijection g : F1 → F2

satisfying g(s)− s ∈ [0, ∆] for all s ∈ F1.

As illustrated in Fig. 2.2, when packets of an information flow travel through

node N1 and node N2, F1 and F2 can be interpreted as the transmission timings

of the flow packets at N1 and N2 respectively. The bijection condition of g means

packet conservation; every flow packet sent by N1 is received and forwarded by N2.

The condition g(s)−s ∈ [0, ∆] means that every flow packet transmission satisfies

causality and the delay constraint ∆. Based on the above definition, we define

a bidirectional flow as a superposition of two unidirectional flows with opposite

directions.

Definition 2.2.2 A pair of point processes (F1, F2) forms a bidirectional flow, if
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replacemen

N1 N2

F1

F2

∆

Figure 2.2: Every packet transmission of a unidirectional flow is assumed to satisfy
packet conservation, causality, and the delay constraint ∆.

Fi can be decomposed into F12
i and F21

i (i.e., Fi = F12
i ⊕F21

i ) such that (F12
1 , F12

2 )

and (F21
2 , F21

1 ) are unidirectional flows.

We allow (F12
1 , F12

2 ) and (F21
2 , F21

1 ) to have zero rate, so that a unidirectional

flow is a special case of a bidirectional flow.

2.2.2 Problem Statement

We formulate detection of bidirectional flow as a binary composite hypothesis

testing problem. Let S1 and S2 denote the transmission processes of N1 and

N2, respectively. Given the measurements (si)
2
i=1 in [0, t], we test the following

hypotheses:

H0 : S1 and S2 are independent;

H1 : Si = Fi ⊕Wi, i = 1, 2, and (F1, F2) forms a bidirectional flow.

(2.1)

We further assume that, under H1,

1. F1 and F2 are point processes with non-zero rates1.

2. F1 and F2 are not independent.

1In other words, if NFi
(t) denotes the number of epochs of Fi in [0, t], there exists δ > 0 such

that lim inf
t→∞

NFi
(t)

t
≥ δ almost surely, i = 1, 2.
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3. (F1,F2), W1, and W2 are independent.

H0 corresponds to the scenario that N1 and N2 have independent transmissions.

H1 corresponds to the scenario that N1 and N2 relay packets of information flows

in either or both directions: (Fi)
2
i=1 and (Wi)

2
i=1 represent the flow part and the

chaff part, respectively. Note that under both hypotheses, no restriction is imposed

on the marginal distributions of Si, Fi, and Wi.

The assumptions under H1 are imposed to make two hypotheses disjoint. The

first assumption implies that the bidirectional flow should have positive rate. The

second assumption means that the flow parts of N1 and N2 should not be indepen-

dent, and this assumption is expected to hold in general due to the delay constraint

∆. The third assumption implies that the chaff parts of N1 and N2 are indepen-

dent, and they are also independent of the flow part. We note here that the third

assumption is more restrictive than that used in earlier works [13, 14].

We employ the notion of Chernoff consistency [68] to evaluate the asymptotic

performance of detectors.

Definition 2.2.3 For j = 0, 1, Pj denotes the set of all possible distributions of

(Si)
2
i=1 under Hj. A detector δ((si)

2
i=1, t) is a function of the epochs of (si)

2
i=1 in

[0, t], which is equal to j if the decision is Hj. δ((si)
2
i=1, t) is said to be consistent

if

1. ∀ Q0 ∈ P0, lim
t→∞

Q0(δ((Si)
2
i=1, t) = 1) = 0, and

2. ∀ Q1 ∈ P1, lim
t→∞

Q1(δ((Si)
2
i=1, t) = 0) = 0.
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In other words, a detector is consistent if its false alarm and miss detection

probabilities vanish as t grows, under all possible distributions in P0 and P1. In

the following sections, we will reduce P0 and P1 to the sets of distributions sat-

isfying certain additional conditions, and prove the consistency of our detection

algorithms.

Intuitively, the greater the amount of chaff epochs, the harder the flow detection

becomes. To measure the relative strength of the flow part with respect to the chaff

part, we introduce the following definition of flow fraction.

Definition 2.2.4 Under H1, suppose that (Si)
2
i=1 consists of the bidirectional flow

(Fi)
2
i=1 and the chaff part (Wi)

2
i=1. Given a realization (si)

2
i=1, where si = fi ⊕

wi, i = 1, 2, the flow fraction of (si)
2
i=1 is defined as

R(t) ,

2∑

i=1

|Fi ∩ [0, t]|

2∑

i=1

|Si ∩ [0, t]|
, R , lim inf

t→∞
R(t) (2.2)

where |Fi ∩ [0, t]| is the number of flow packet transmissions at node Ni in [0, t],

and |Si ∩ [0, t]| is the number of total transmissions at node Ni in [0, t].

In other words, R(t) is the fraction of the flow epochs in the measurements up

to time t, and R is its limiting value.

2.3 Parametric Flow Detection

We begin with an easier case where an accurate parametric model for traffic is

available. The main result in this section is a simple algorithm that computes, for
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measurements (si)
2
i=1, the maximum schedulable flow fraction (R̄) as our decision

statistic. The flow detection algorithm is a threshold decision rule based on R̄.

The computation of the threshold, however, requires the knowledge of the traffic

distribution under H0, which we assume available at the moment; this assumption

is removed in Section 2.4.

2.3.1 Decision Statistic: Maximum Schedulable Flow Frac-

tion

Under both hypotheses, given a realization (si)
2
i=1 in [0, t], itsmaximum schedulable

flow fraction R̄(t) is defined as

R̄(t) , max
{(fi,wi)

2
i=1 : si = fi ⊕wi ∼ H1}

2∑

i=1

|Fi ∩ [0, t]|

2∑

i=1

|Si ∩ [0, t]|

where si = fi ⊕ wi ∼ H1 denotes the constraint that si = fi ⊕ wi, i = 1, 2,

and (f1, f2) is a realization2 of a bidirectional flow. In other words, we schedule a

maximum number of bidirectional flow transmissions between s1 and s2 in [0, t],

and denote the fraction of the flow part by R̄(t).

To effectively evaluate R̄(t), we propose a matching algorithm called

Bidirectional-Bounded-Greedy-Match (BiBGM). To achieve its goal, BiBGM starts

with the first epoch in S1 ∪ S2, and subsequently finds the earliest one-to-one

matches satisfying causality and the delay constraint. We explain below the op-

eration of BiBGM using an example in Fig. 2.3 accompanied by a pseudocode

2In other words, fi can be partitioned into two subsequences f
12
i and f

21
i such that there

exist bijections g1 : F12
1 → F12

2 and g2 : F21
2 → F21

1 satisfying g1(s) − s ∈ [0, ∆], ∀s ∈ F12
1 and

g2(s)− s ∈ [0, ∆], ∀s ∈ F21
2 .
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Table 2.1: Bidirectional-Bounded-Greedy-Match

BiBGM(s1, s2, ∆):

1: m = n = 1;
2: while m ≤ |S1| and n ≤ |S2|
3: if s2(n) < s1(m)−∆

4: s2(n) is chaff; n← n+ 1;

5: else if s2(n) > s1(m) + ∆

6: s1(m) is chaff; m← m+ 1;

7: else
8: match s1(m) with s2(n); m← m+ 1; n← n+ 1;
9: end
10: end

11: return
|{Matched epochs}|

|S1|+ |S2|

implementation in Table 2.1:

1. At the beginning, all the epochs in S1 ∪ S2 are unmatched. Start with the

earliest epoch in S1 ∪ S2, and go to MATCH to find its match.

2. MATCH: Let t denote the epoch for which we want to find a match. For

i = 1, 2, if t ∈ Si, search for the earliest unmatched epoch in [t, t+∆]∩S(3−i)

and match it with t; if there is no unmatched epoch in the interval, label t

as chaff (an epoch is said to be checked if it is either matched with another

epoch or labeled as chaff). Go to MOVE.

3. MOVE: If every epoch in S1 ∪ S2 is checked, terminate. Otherwise, move to

the next unchecked epoch in S1 ∪ S2 and go to MATCH to find its match.

For the example in Fig. 2.3, BiBGM starts with t1. Since t1 ∈ S1, we search for

the earliest unmatched epoch in [t1, t1+∆]∩ S2, which is t2. Hence, t1 is matched

with t2. Then, we move to the next unchecked epoch, t3 of S1. Because t2 is the

only epoch in [t3, t3+∆]∩S2 and it is already matched with t1, we label t3 as chaff.

23

38



chaff

s1

s2

∆

t1

t2

t3

t4

t5

Figure 2.3: Bidirectional-Bounded-Greedy-Match

Next, we move to the next unchecked epoch (t4 of S2) and searches for the earliest

unmatched epoch in [t4, t4 + ∆] ∩ S1. BiBGM continues until the last epoch of

S1 ∪ S2 is checked.

From Table 2.1, it can be easily seen that BiBGM has linear computational

complexity with respect to the sample size (i.e., the total number of observed

epochs). The following theorem states that BiBGM indeed achieves the optimal

scheduling such that the flow part is maximized.

Theorem 2.3.1 Suppose we run BiBGM on (si)
2
i=1 in [0, t]. Then, the fraction

of the matched epochs is equal to R̄(t).

Proof : See Section 2.6.

2.3.2 Parametric Flow Detection under Poisson Models

In this section, we assume the knowledge of the underlying parametric model for

transmission processes and propose a detection algorithm called Bidirectional Flow
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Detector (BFD). BFD is a threshold decision rule based on R̄(t). Specifically, BFD

with a threshold τ takes the following form:




If R̄(t) ≥ τ , declare H1;

otherwise, declare H0.

If (Si)
2
i=1 contains a bidirectional flow, R̄(t) is, by definition, an upper bound on

R(t) and will tend to be greater compared to the case that (Si)
2
i=1 is an independent

pair; this is the intuition behind declaring H1 when R̄(t) is greater than τ .

Under H1, since R̄(t) ≥ R(t), BFD with τ can detect any flow with R(t) ≥ τ ,

and a smaller τ makes BFD capable of detecting a larger set of flows. However, a

smaller τ results in a higher false alarm probability. Hence, there exists a trade-

off between the detection ability of BFD and its false alarm probability, and we

need to consult the parametric model for (Si)
2
i=1 under H0 to find out how small

τ should be. Specifically, if under H0, as t increases R̄(t) converges to or stays

close to a certain constant τ0 with high probability, we can set τ slightly greater

than τ0 and make the false alarm probability become negligible as t grows. For

homogeneous Poisson traffic, the following convergence result gives a guidance for

setting τ .

Theorem 2.3.2 Under H0, if S1 and S2 are homogeneous Poisson processes with

rates λ1 and λ2 respectively, then as t grows to infinity, R̄(t) converges almost

surely (a.s.) to

φ(λ1,λ2) =





2λ1λ2(1− e2∆(λ1−λ2))

(λ1 + λ2)(λ2 − λ1e2∆(λ1−λ2))
if λ1 6= λ2

2λ∆

1 + 2λ∆
if λ1 = λ2 = λ.

Proof : See Section 2.6.
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Especially, if (Si)
2
i=1 under H0 and (Wi)

2
i=1 under H1 are homogeneous Poisson

processes, the following theorem states that any bidirectional flow with a positive

rate is detectable regardless of the amount of chaff epochs.

Theorem 2.3.3 Suppose that (i) under H0, S1 and S2 are homogeneous Poisson

processes, (ii) under H1, W1 and W2 are homogeneous Poisson processes, and

(iii) under both hypotheses, the rates3 of S1 and S2 are λ1 and λ2, respectively.

Then, for any η ∈ (0, 1), there exists a proper threshold τ , such that BFD with

τ can consistently detect4 any bidirectional flow with R ≥ η a.s., with the false

alarm probability decaying exponentially fast as the sample size grows. Especially,

for η ∈
(
0, 2·min{λ1,λ2}

λ1+λ2

)
, the following τ can be used:





2λ1 − 2λ2
λ1(4− η)− λ2η

λ2(4− η)− λ1η
e2∆(λ1−λ2)

(λ2 + λ1)

(
1− λ1(4− η)− λ2η

λ2(4− η)− λ1η
e2∆(λ1−λ2)

) if λ1 6= λ2,

η + 2λ(2− η)∆

2 + 2λ(2− η)∆
if λ1 = λ2 = λ.

Proof : See Section 2.6.

It can be shown that the suggested τ in Theorem 2.3.3 is a strictly increasing

function of η, and as η decreases to 0, it decreases to φ(λ1,λ2) in Theorem 2.3.2.

This means that to detect flows with smaller flow fraction, τ should be closer to

the limt→∞ R̄(t) value under H0.

Instead of the knowledge of the parametric model, training data can also be

3By rates, we mean that lim
t→∞

Ni(t)

t
= λi a.s., where Ni(t) denotes the number of epochs of

Si in [0, t].
4In other words, if the distributions of (Si)

2
i=1 under H0 and H1 satisfy (i), (ii), (iii), and

R ≥ η a.s., then under all those distributions, the false alarm and miss detection probability
vanish as t increases (as in Definition 2.2.3).
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used to set τ . If a large set of different realizations of H0 traffic is available, we can

run BiBGM over each realization in the training data set, estimate the statistical

behavior of R̄(t) under H0, and set τ such that the probability that R̄(t) ≥ τ under

H0 (i.e., false alarm probability) becomes reasonably small as t grows. However,

if neither a parametric model nor training data is available, it is non-trivial how

to determine an appropriate τ ; this is the case in many practical applications.

2.4 Nonparametric Flow Detection

In this section, we assume that neither a parametric model nor a training data set

is available, and present a novel nonparametric flow detector.

2.4.1 Algorithm Structure

We begin by introducing the structure and the main intuition of our detection al-

gorithm. Fig. 2.4 is describing its structure. A key component of our algorithm is

a transformation of measurements (si)
2
i=1, which we refer to as Independent Traf-

fic Approximation (ITA). As the name suggests, ITA produces an approximately

independent pair of transmission processes (s̄i)
2
i=1 such that s̄i has similar traffic

characteristics (e.g., normalized intensity5, interarrival distribution) with si. After

(s̄i)
2
i=1 is generated, we compare the statistical characteristics of (si)

2
i=1 and (s̄i)

2
i=1.

If the true hypothesis is H0, both (si)
2
i=1 and (s̄i)

2
i=1 are independent pairs with

5The normalized intensity of Si for the [0, t] interval represents the overall trend of its intensity
change in [0, t]. Suppose that the local intensity of Si is well defined in [0, t]: i.e., λ(x) ,

lim
δ→0+

E{Ni[x, x+ δ)}
δ

exists for all x ∈ [0, t], where Ni[a, b) denotes the number of Si epochs in

[a, b). The normalized intensity λ̄(t) of Si for [0, t] is defined as the time-scaled version of the
intensity function: λ̄(t)(x) , λ(tx), x ∈ [0, 1].
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Figure 2.4: The structure of the nonparametric detection algorithm.

similar traffic characteristics. On the other hand, if H1 is true, (si)
2
i=1 and (s̄i)

2
i=1

have similar traffic characteristics, but (si)
2
i=1 is a correlated pair containing a flow

while (s̄i)
2
i=1 approximates an independent pair. Thus, we attempt to infer the true

hypothesis by exploiting the gap between the statistical characteristics of (si)
2
i=1

and (s̄i)
2
i=1: the larger the gap, the more probable H1 is.

2.4.2 Nonparametric Bidirectional Flow Detector

This section presents our detection algorithm, referred to as Nonparametric Bidi-

rectional Flow Detector (NBFD). Here, we simply assume that ITA generates an

output (s̄i)
2
i=1 with desired properties: (i) (s̄i)

2
i=1 approximates an independent

pair of transmission processes, and (ii) its normalized intensities and interarrival

distributions resemble that of (si)
2
i=1. The detail about ITA is delayed to the next

section, and here we focus on the operation of NBFD.

As described in Fig. 2.4, NBFD observes (si)
2
i=1 in [0, t] and first runs ITA

to generate (s̄i)
2
i=1. The next step is to compare the statistical characteristics of

(si)
2
i=1 and (s̄i)

2
i=1. It was shown in Theorem 2.3.3, although stated under the

homogeneous Poisson traffic assumption, that the maximum schedulable flow frac-

tion R̄(t) can be effectively used to distinguish whether the measurements are

from a flow-containing pair or an independent pair. Moreover, R̄(t) can be easily
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evaluated by running BiBGM; hence, NBFD employs R̄(t). NBFD runs BiBGM

separately on (si)
2
i=1 and (s̄i)

2
i=1 and compares the fractions of the matched epochs

in the two cases, denoted by R̄(t) and τ̄(t) respectively. If the true hypothesis is

H0, both (Si)
2
i=1 and (S̄i)

2
i=1 are independent pairs, and they have similar normal-

ized intensities and interarrival distributions; this implies that R̄(t) and τ̄(t) are

expected to be close under H0. On the other hand, when H1 is true, (Si)
2
i=1 and

(S̄i)
2
i=1 have similar normalized intensity functions and interarrival distributions,

but (Si)
2
i=1 contains a flow while (S̄i)

2
i=1 approximates an independent pair; hence,

R̄(t) is expected to be greater than τ̄(t). Based on the above intuition, given (si)
2
i=1

in [0, t], NBFD with ǫ works as follows:

1. Run ITA on (si)
2
i=1 in [0, t] to generate (s̄i)

2
i=1.

2. Run BiBGM on (si)
2
i=1 and (s̄i)

2
i=1: R̄(t) and τ̄(t) denote the fractions of the

matched epochs for (si)
2
i=1 and (s̄i)

2
i=1 respectively.

3. If R̄(t) ≥ τ̄(t) + ǫ, declare H1; otherwise, declare H0.

where ǫ is a positive number added to τ̄(t) to allow small difference between R̄(t)

and τ̄(t) under H0. τ̄(t) can also be seen as an estimate of what R̄(t) would be

under H0. Therefore, recalling the discussion of setting τ of BFD in Section 2.3.2,

NBFD can be alternatively interpreted as BFD with a measurement-dependent

threshold τ̄(t) + ǫ.

It is evident from the form of NBFD that a smaller ǫ will lead to the decrease

in the miss detection probability. However, the decrease in ǫ will increase the false

alarm probability. Because of the trade-off associated with the choice of ǫ and the

nonparametric characteristic of our problem, it is difficult to claim that certain
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Figure 2.5: ITA samples w-second intervals {A1, A2, . . .} and {B1, B2, . . .} from
(si)

2
i=1 and assemble them to generate (s̄i)

2
i=1.

ǫ value is the best choice. The experimental results in Section 2.5 suggest that

setting ǫ ≈ 0.05 generally results in satisfactory performance.

2.4.3 Independent Traffic Approximation

In this section, we present how ITA approximates an independent pair of transmis-

sion processes that has the similar normalized intensity and interarrival distribution

with (Si)
2
i=1.

Fig. 2.5 is illustrating the operation of ITA. ITA has two parameters: the sam-

pling window width w and the gap α (α ≥ ∆) between neighboring sampling

windows. As described in Fig. 2.5, ITA samples the epochs in the w-second win-

dows separated by α-second gaps, shifts them properly, and assembles them to

approximate independent traffic. The intuition behind ITA is that if the gap α

between two sampling windows is sufficiently large, the epochs in different win-

dows will tend to be approximately uncorrelated. Note that when (Si)
2
i=1 contains

a bidirectional flow, ITA disassembles the flow part and significantly reduces the

flow-induced correlation. In addition, since we use a sequence of sampled intervals

of Si for generating S̄i, S̄i and Si are expected to share some common character-

istics.
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Figure 2.6: S1 and S2 are non-homogeneous Poisson processes, and λ1(x) and λ2(x)
denote their local intensities at time x respectively. λ1(x) and λ2(x) can only take
values from {µ1, µ2} (µ1 6= µ2). The figure describes the intensity change of S1, S2,
S̄1, and S̄2 using two types of bars. The bars filled with slant lines represent the
intervals in which λi(x) = µ1, and the blue bars represent the intervals in which
λi(x) = µ2. The numbers above or below the intervals describe the correspondence
between the sampled intervals in Si and the intervals in S̄i.

To illustrate how the normalized intensities of Si and S̄i are related, Fig. 2.6

describes the intensity change of (Si)
2
i=1 and (S̄i)

2
i=1 for an example where S1 and

S2 are non-homogeneous Poisson processes with two possible intensity levels. As

observed in Fig. 2.6, if the average time that the intensity of Si stays in one level

is much longer than 2(w + α) seconds, the normalized intensity function of S̄i is

similar to that of Si. About interarrival distribution, if w is sufficiently large so

that a w-second sampling window is likely to contain a large number of points, the

interarrival distribution of S̄i will resemble that of Si. Moreover, if the interarrival

distribution of Si varies slowly over time, as in the example of Fig. 2.6, the inter-

arrival distribution of S̄i will also change over time with the similar trend, even

though the time scale is different due to the sampling procedure of ITA. Note that

resampling from the empirical interarrival distributions (i.e., generating i.i.d. in-
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terarrival times of S̄i from the empirical interarrival distribution of Si, for i = 1, 2)

can also produce an independent pair of point processes. However, unlike (S̄i)
2
i=1 of

ITA, when (Si)
2
i=1 is non-stationary, the results of such resampling approaches may

have a totally different dynamics from (Si)
2
i=1; they may not capture the patterns

of intensity change or interarrival distribution change in (Si)
2
i=1.

Now, we will check whether (S̄i)
2
i=1 can approximate an independent pair.

When S1 and S2 are independent, it directly follows that S̄1 and S̄2 are inde-

pendent. On the other hand, if (Si)
2
i=1 contains a bidirectional flow, S̄1 and S̄2

are not necessarily independent. However, assuming that correlation across time

is weak and the gap α is much larger than ∆, the epochs in different windows

are expected to be approximately uncorrelated: i.e., in Fig. 2.5, the epochs in

each Ai will be approximately uncorrelated with the epochs in
⋃

j≥1Bj. This im-

plies that when temporal correlation is weak, (S̄1, S̄2) is expected to approximate

an independent pair. The following example illustrates a case where (Si)
2
i=1 has

weak temporal correlation. Suppose S1 is a Poisson process and S2 is such that

S2(i) = S1(i) + Di, ∀i, where Dis are independent random delays bounded by ∆

a.s.: i.e., (Si)
2
i=1 is a unidirectional flow with a delay constraint ∆. The memory-

less property of Poisson processes implies that epochs in an interval are correlated

with epochs in another disjoint interval only if the gap between the two intervals

is less than ∆ seconds. Hence, if α ≥ ∆, epochs in different sampling windows of

ITA are independent, implying that (S̄i)
2
i=1 is an independent pair.

Under H0, NBFD requires (S̄i)
2
i=1 to be an independent pair having the similar

traffic characteristics with (Si)
2
i=1, because R̄(t) and τ̄(t) have to be close under

H0. However, under H1, NBFD does not necessitate the independence of S̄1 and

S̄2, even though the independent case is ideal. Under H1, NBFD wants τ̄(t) to
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be less than R̄(t), and this can be achieved by making (S̄i)
2
i=1 very unlikely to

contain a flow. Because, as can be inferred from the discussion in Section 2.3.2,

the maximum schedulable flow fraction (e.g., R̄(t) and τ̄(t) of NBFD) tends to

be higher when the measurements come from a flow-containing pair. Note that

ITA does make (S̄i)
2
i=1 unlikely to contain a flow by tearing apart the flow part of

(Si)
2
i=1 in its sampling procedure.

Given the measurements (si)
2
i=1 in [0, t], ITA with (w, α) generates (s̄i)

2
i=1 as

follows:

1. Initially, s̄1 and s̄2 contain no epoch.

2. For i = 0, 1, . . . , ⌊ t
2(w+α)

⌋ − 1:

(a) Take the epochs of s1 in [2i(w+ α), 2i(w+ α) +w], subtract i(w+ 2α)

from the epochs, and add them to s̄1.

(b) Take the epochs of s2 in [(2i+1)(w+α), (2i+1)(w+α)+w], subtract

i(w + 2α) + (w + α) from the epochs, and add them to s̄2.

The implementation of ITA is given in Table 2.2. As can be seen from Table 2.2,

ITA has linear computational complexity with respect to the sample size.

One drawback of ITA is that it throws away more than a half of the mea-

surements during the sampling procedure, thereby restricting the sample size of

(s̄i)
2
i=1 to be at most a half of that of (si)

2
i=1. (s̄i)

2
i=1, together with (si)

2
i=1, is used

to calculate the decision statistic of NBFD, so a large sample size is desirable.

Therefore, we suggest a modification of ITA, referred to as ITA-double (ITAd), to

double the sample size of (s̄i)
2
i=1.
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Table 2.2: Independent Traffic Approximation

ITA(s1, s2, t, w, α):

1: s̄1 ← (); s̄2 ← (); a1 ← (); a2 ← (); j = 1; k = 1;
2: for i = 0 : 1 : ⌊ t

2(w+α)
⌋ − 1

3: while s1(j) < 2i(w + α)
4: j ← j + 1;
5: end
6: while s1(j) ≤ 2i(w + α) + w
7: a1 ← a1 ⊕ s1(j); j ← j + 1;
8: end
9: while s2(k) < (2i+ 1)(w + α)
10: k ← k + 1;
11: end
12: while s2(k) ≤ (2i+ 1)(w + α) + w
13: a2 ← a2 ⊕ s2(k); k ← k + 1;
14: end
15: a1 ← a1 − i(w + 2α); s̄1 ← s̄1 ⊕ a1;
16: a2 ← a2 − (i(w + 2α) + w + α); s̄2 ← s̄2 ⊕ a2;
17: a1 ← (); a2 ← ();
18: end
19: return (s̄i)

2
i=1.

∗ For a sequence (xi)i≥1 and a real number r, (xi)i≥1 − r , (yi)i≥1 where
yi = xi − r, ∀i.

s1

s2

s̄1

s̄2

αw

A1A1 A2A2 A3A3 A4

B1B1 B2B2 B3B3

Figure 2.7: The sample size of (s̄i)
2
i=1 doubles compared to ITA. Unlike ITA, ITAd

does not throw away {A2, A4, . . .} or {B2, B4, . . .}; it assembles all of {A1, A2, . . .}
and {B1, B2, . . .} to generate (s̄i)

2
i=1.

The operation of ITAd is illustrated in Fig. 2.7. In ITAd, when S1 and S2 are

independent, so are S̄1 and S̄2. However, if (Si)
2
i=1 contains a flow, (S̄i)

2
i=1 is not

an independent pair, because the epochs in Ai+1 and those in Bi are correlated

due to the presence of the flow. However, (S̄i)
2
i=1 is a concatenation of w-second

34

49



intervals, where, in each interval, the epochs of S̄1 and S̄2 are approximately uncor-

related. We believe that this property is enough for NBFD to sense the difference

in statistical characteristics between (Si)
2
i=1 and (S̄i)

2
i=1 under H1, especially when

w is large. Although we have no analytical proof for the superiority of ITAd over

ITA, the use of ITAd in NBFD instead of ITA consistently resulted in a better

performance in all our simulations and experiments in Section 2.5.

2.4.4 Performance Analysis

This section provides the analysis of algorithmic efficiency and consistency of

NBFD.

NBFD is efficient in terms of computation and memory requirement. Because

its main components, ITA and BiBGM, have linear complexity, NBFD also has

linear computational complexity with respect to the sample size. In addition,

assuming that NBFD with (w, α, ǫ) is executed in real-time over transmission

processes of two nodes, it only requires to save the most recent BiBGM matches of

(si)
2
i=1 and (s̄i)

2
i=1 and the timing measurements in the most recent 2(w+α)-second

interval; they are all the information needed to continue running ITA and BiBGM

over the future timing measurements.

For a class of non-homogeneous Poisson traffic, NBFD has a consistency prop-

erty as stated in the following theorem.

Theorem 2.4.1 Assume that w and α are any positive numbers with α ≥ ∆.

For any η ∈ (0, 1), there exists an ǭ ∈ (0, 1) such that, for any ǫ ∈ (0, ǭ], NBFD

with (w, α, ǫ) consistently detects any bidirectional flow with R ≥ η a.s., if the
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distributions of (Si)
2
i=1 under H0 and H1 satisfy the following assumptions6:

1. Under both hypotheses, S1 and S2 are non-homogeneous Poisson processes.

In addition, under H1, Si = (F12
i ⊕ F21

i ) ⊕Wi. F12
1 , F21

2 , W1, and W2

are independent non-homogeneous Poisson processes, F12
2 is7 sort{F12

1 (i) +

αi, i ≥ 1}, and F21
1 is sort{F21

2 (i) + βi, i ≥ 1} where {αi, i ≥ 1} and

{βi, i ≥ 1} are random variables satisfying αi, βi ∈ [0,∆] almost surely.

Furthermore, {αi, i ≥ 1} ⊥⊥ W1, {βi, i ≥ 1} ⊥⊥ W2, and8 ⊥⊥ {αi, i ≥

1}, {βi, i ≥ 1}, F12
1 , F21

2 .

2. Let λ1(t), λ2(t), λf1(t), and λf2(t) denote the local intensities of S1, S2, F
12
1 ,

and F21
2 respectively. There exist two finite sets Λ0 , {~µ(j) , (µ

(j)
1 , µ

(j)
2 ), 1 ≤

j ≤ M0} and Λ1 , {~λ(k) , (λ
(k)
1 , λ

(k)
2 , λ

(k)
f1 , λ

(k)
f2 ), 1 ≤ k ≤ M1} with µ

(j)
i >

0, λ
(k)
i > 0, i = 1, 2, ∀j, k. Under H0, (λ1(t), λ2(t)) can only take values in

Λ0. Under H1, ~λ(t) , (λ1(t), λ2(t), λf1(t), λf2(t)) can only take values in

Λ1.

3. Under H0, if c(t) denotes the number of times that (λ1(t), λ2(t)) changes its

value in [0, t], then lim
t→∞

c(t)

t
= 0. Similarly, under H1, if c(t) denotes the

number of times that ~λ(t) changes its value in [0, t], then lim
t→∞

c(t)

t
= 0.

4. Under H0, if ρk(t) (1 ≤ k ≤ M0) denotes the fraction of the time in [0, t]

that (λ1(t), λ2(t)) = ~µ(k), then as t increases, each ρk(t) converges. Similarly,

under H1, if ρk(t) (1 ≤ k ≤ M1) denotes the fraction of the time in [0, t]

that ~λ(t) = ~λ(k), then as t increases, each ρk(t) converges.

6In other words, if the distributions of (Si)
2
i=1 under H0 and H1 satisfy the listed assumptions

(including R ≥ η a.s. under H1), then under all those distributions, the false alarm and miss
detection probabilities of NBFD with (w, α, ǫ) vanish as t grows (as in Definition 2.2.3).

7For a countable set A of real numbers, sort{A} is the sequence of the elements of A ordered
in the increasing order.

8For random processes Ais, A1 ⊥⊥ A2 means A1 and A2 are independent, and ⊥⊥ A1, . . . , An

means A1, . . . , An are independent.

36

51



Proof : See Section 2.6.

The first assumption means that under H1, (Si)
2
i=1 is a superposition of three

independent parts: the unidirectional flow from S1 to S2, the unidirectional flow

from S2 to S1, and the chaff parts. αi and βi represent packet delays of the two

unidirectional flows, and they satisfy certain independence relationships involving

the flow parts and the chaff parts. The first assumption is sufficient to guarantee

that the output of ITA, (S̄i)
2
i=1, is an independent pair under H1. The second

assumption implies that the local intensities of the total traffic and flows can only

take a finite number of different values. The third assumption says that the number

of intensity changes in [0, t] grows as o(t). Finally, the last assumption means that

the fraction of the time that the intensity vector assumes a specific value converges

as the observation time increases. Under these assumptions, Theorem 2.4.1 states

that a bidirectional flow with any positive rate can be consistently detected by

NBFD if ǫ is properly set. Note that the assumptions do not restrict traffic to be

stationary.

As pointed out by Paxson and Floyd [17], a Poisson process is not always a

good model for network arrival processes. Several network traces (e.g., Ethernet

and World Wide Web traffic) have been experimentally proved to display self-

similarity [69–71], which Poisson processes do not show. To test the performance

of NBFD over non-Poisson traffic, we will evaluate NBFD in the following section

using LBL TCP traces, which were used in [17] to invalidate Poisson modeling,

and real-world measurements from MSN VoIP sessions.
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2.5 Numerical Results

NBFD was tested using the synthetic Poisson traffic, LBL TCP traces, and the

real-world measurements from MSN VoIP sessions. Comparison with other passive

flow detectors is also provided: the wavelet analysis in [1], Detect-Attack-Chaff

(DAC) in [13], and the random projection method in [16].

The wavelet analysis [1] calculates the wavelet coefficients of N1(t) and N2(t)

using the mother Haar wavelet with a sufficiently large scale, where Ni(t) is the

number of epochs of Si in [0, t]. Then, it calculates the Peason’s correlation coeffi-

cient between the wavelet coefficients of N1(t) and that of N2(t), and declares H1 if

the correlation coefficient is greater than a predetermined threshold κ; otherwise,

it declares H0. The intuition of the algorithm is based on their analysis under

the Poisson traffic assumption: the correlation coefficient converges to a positive

constant as the scale9 grows to infinity if (Si)
2
i=1 contains a flow.

DAC [13] is based on the intuition that as t increases |N1(t) − N2(t)| tends

to grow large when S1 and S2 are independent, whereas it tends to stay small if

(Si)
2
i=1 contains a flow with a much higher rate than the chaff part. DAC with a

parameter10 p∆ monitors |N1(t)−N2(t)|. At every 8(p∆+1)2 packet transmissions,

both N1 and N2 are set to be zero and new counting begins. It declares H0 if

|N1(t) − N2(t)| grows larger than a threshold 2p∆. If |N1(t) − N2(t)| stays less

than 2p∆ during the whole observation duration, DAC declares H1. Note that

9Since the wavelet analysis relies on the convergence of the correlation coefficient as the scale
grows, a large scale is desired. However, given a fixed observation duration, using too large scale
can cause the sample size of the correlation coefficient estimation (i.e., the number of wavelet
coefficients) to be very small. To prevent this, in our experiments, the sample size is fixed to be
100, and the scale is set to be (the observation duration)/100.

10In [13], p∆ is defined to be a uniform upper bound on the number of epochs of a node (S1

or S2) in any ∆-sec interval. However, none of our test traces guarantees such a uniform upper
bound. Hence, we tried DAC with various p∆ values, which include large enough numbers to
bound the number of epochs in any ∆-sec interval with high probability.
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under H1, if bursty chaff transmissions occur in either node, |N1(t) − N2(t)| may

suddenly grow larger than 2p∆ thereby resulting in a miss detection. Hence, DAC

is vulnerable to bursty chaff insertion.

The random projection method in [16], which we denote by RP, is based on

the idea of measuring the distance between S1 and S2 after random projection. It

first partitions the observation interval into the time slots with length LTS, and

counts the number of epochs in each time slot. The number of epochs of Si in

the jth time slot is denoted by Vi(j), i = 1, 2, 1 ≤ j ≤ T . Then, RP generates

a set of K random basis vectors {Bk ∈ {−1, 1}T , 1 ≤ k ≤ K}, where each Bk(j)

(1 ≤ j ≤ T ) is either 1 or−1 with an equal probability11. After that, Vi is projected

on {Bk, 1 ≤ k ≤ K}: Ci(k) ,
∑

j Vi(j)Bk(j), i = 1, 2, 1 ≤ k ≤ K. Finally, RP

obtains a K-dimensional binary vector C̄i, where C̄i(k) , 1{Ci(k)>0}, referred to

as the binary sketch of Si. The decision statistic of RP is the Hamming distance

between C̄1 and C̄2. If the distance is less than a threshold th, RP declares H1;

otherwise, H0 is declared.

2.5.1 Simulation Results: Poisson Traffic and LBL traces

We first performed Monte Carlo simulations using the synthetic non-homogeneous

Poisson traffic. In the simulations, S1 and S2 are Poisson processes with intensity

functions λ1(t) and λ2(t) respectively. Under H1, (Si)
2
i=1 is a superposition of two

independent parts, the unidirectional flow (Fi)
2
i=1 and the chaff part (Wi)

2
i=1. F1

is a Poisson process with intensity function λf (t), and F2 is generated by adding a

random delay to each epoch of F1. Random delays are independent and identically

11About the parameters of RP, we used LTS = 0.5s, as recommended in [16]. As explained
in [16], large K is desired since it will allow us to extract more information from Si. We used
K = 4096, which we believe is sufficiently large (four times the maximum K used in [16]).
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distributed (i.i.d.) and uniformly distributed in [0, ∆], where ∆ = 0.1s. W1 and

W2 are independent Poisson processes with intensity functions λ1(t) − λf (t) and

λ2(t) − λf (t), respectively. In each run of the simulation, (λ1(t), λ2(t), λf (t)) is

piecewise constant, and it takes different values in the first third, the second third,

and the last third of the observation duration. Specifically, it follows one of the

below change scenarios with equal probability:

1. (15, 15, 5)→ (15, 15, 12)→ (15, 15, 7).

2. (25, 10, 8)→ (10, 10, 8)→ (10, 25, 8).

3. (25, 25, 20)→ (12, 12, 7)→ (8, 8, 3).

4. (21, 15, 14)→ (12, 6, 5)→ (12, 24, 5).

Under H0, S1 and S2 are independent Poisson processes, and in each run of the

simulation, (λ1(t), λ2(t)) follows one of the above change scenarios (with no λf

part) with equal probability. In real world, such changes in intensity may corre-

spond to the beginning of new sessions, the end of old sessions, the rate change of

existing sessions, and so on. All change scenarios have the same average rates, but

each scenario displays a different dynamics. By this simulation setting, we aimed

at testing the performance of detectors over the non-stationary traffic displaying

possibly a different dynamics at each observation interval.

Fig. 2.8 shows the ROC curves of NBFD (with ITAd), NBFD (with ITA), the

wavelet analysis, DAC, and RP. To obtain the ROC curves, we increased ǫ of

NBFD and κ of the wavelet analysis from 0 to 1 with an increment of 0.01, p∆ of

DAC from 4 to 100 with an increment of 2, and th of RP from 0 to K (K = 4096)

with an increment of 1 while plotting (PF , 1 − PM) of each case, where PF and

PM denote the false alarm probability and miss detection probability respectively.
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Figure 2.8: ROC curves of NBFD (ITAd), NBFD (ITA), the wavelet analysis,
DAC, and RP for different observation durations: NBFD parameters are w = 2s
and α = ∆ = 0.1s, and the number of Monte Carlo runs is 10000.

When we further increased the sample size, the ROC curves of NBFD (ITAd),

NBFD (ITA), and the wavelet analysis approached the upper left corner implying

that perfect detection is possible if the thresholds are properly set. On the other

hand, DAC and RP resulted in non-negligible error probabilities in every case, and

their ROC curves did not improve much from the curves in Fig. 2.8, even when we

further increased the observation duration to 160s. By comparing the ROC curves

of NBFD (ITAd) and NBFD (ITA), we can observe that ITAd, the heuristic to

double the sample size of (s̄i)
2
i=1, resulted in a better detection performance than

ITA. In all our simulations and experiments, ITAd consistently showed better

results than ITA. In the rest of this section, NBFD is assumed to employ ITAd

and will be compared with other detectors.
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To test the performance of detectors over non-Poisson traffic, we generated

synthetic traffic based on the TCP packet timestamps in LBL-PKT-3 (2 hours),

LBL-PKT-4 (1 hour), and LBL-PKT-5 (1 hour) in [17]. These traces were mea-

sured at the Lawrence Berkeley Laboratory’s wide-area Internet gateway, and each

trace was gathered at a different date in January 1994. For the detail, refer to [17].

From each dataset, we extracted timestamps of TCP packets that originated from

specific users, and used them for traffic generation. For the flow part of H1 traffic,

timestamps of one user in LBL-PKT-3 were used as F1, and F2 was generated by

adding a delay to each epoch in F1. The delays are i.i.d. and uniformly distributed

in [0, ∆], where ∆ = 0.1s. For the chaff part, timestamps of one user in LBL-PKT-

4 were used as W1, and those of one user in LBL-PKT-5 were used as W2. For H0

traffic, S1 is generated by superposing traces of two users in LBL-PKT-4, and S2

is similarly generated with two users in LBL-PKT-5. Using different sets of users

for the traffic generation, we were able to create the four-hour long test traffic.

We tested DAC with various p∆ ranging from 10 to 400, but its miss detection

probability was higher than 0.38 in every case. This is not surprising because

DAC is vulnerable to bursty chaff transmissions and LBL TCP traces were shown

to be bursty in [17]. Table 2.3 shows the error probabilities of NBFD, the wavelet

analysis, and RP. For NBFD, we used ǫ = 0.05. For the wavelet analysis and

RP, assuming the absence of a parametric model and training data, we have no

clear standard to set their thresholds. Hence, we tried all values from 0 to 1 with

an increment of 0.01 for κ of the wavelet analysis and all values from 0 to 4096

with an increment of 1 for th of RP, and found their crossover error rates and the

corresponding thresholds, which are listed in Table 2.3. NBFD and the wavelet

analysis outperformed RP, and for long observation durations (160s and 320s),

NBFD performed better than the wavelet analysis.
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Table 2.3: Performance on LBL TCP traces. NBFD parameters are w = 2s,
α = ∆ = 0.1s, and ǫ = 0.05. The numbers of experiments are 180, 90, and 45
for observation duration 80s, 160s, and 320s, respectively. Under H0, the average
traffic rate is (λ1, λ2) = (36.4, 36.1). Under H1, (λ1, λ2) = (36.1, 36.8). The
fraction of chaff in H1 traffic is 0.37.

NBFD Wavelet RP

Time PF PM κ PF PM th PF PM

80s 0 0.100 0.19 0.034 0.056 762 0.101 0.144

160s 0 0.057 0.20 0.034 0.056 793 0.112 0.133

320s 0 0.022 0.19 0.023 0.067 774 0 0.089

2.5.2 Experimental Results: MSN VoIP Traffic

We tested the detectors using three-and-a-half-hour long real-world traffic involving

the MSN VoIP application12, which is a representative example of latency-sensitive

applications. Fig. 2.9 is illustrating the experimental setup. The laptop P1 is

located in the place covered by the wireless access point A1, and two other laptops,

P2 and P3, are located in the different place covered by the wireless access point

A2, which is controlled to serve only P2 and P3. Suppose it is known that P1 is

engaged in a VoIP conversation. By measuring the wireless transmission epochs

of P1 and A2, our objective is to detect whether P1 is having a VoIP conversation

with any device served by the access point A2. In practice, there may be additional

information available: packet sizes, protocol types (TCP or UDP), destination

addresses, and so on. However, here we assume that we have no access to such

information due to encryption or other countermeasures employed by the network

administrator, and only the timing measurements are available.

Let S1 and S2 denote the transmission processes of P1 and A2 respectively.

12Windows Live Messenger 2009 (14.0.8089.726) was used for MSN VoIP calls, and Wireshark
network protocol analyzer (ver 1.2.6.) with the AirPcap classic adaptor was used to record the
timings of wireless transmissions.
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Figure 2.9: If P1 has a VoIP conversation with either P2 or P3, the VoIP packets
should depart from P1 and travel through A2.

Under H1, P1 has a VoIP conversation with P2, and P3 downloads a file from

a distant FTP server with 20kB/s rate. Since A2 transmits packets for both P2

and P3, its transmission timings of FTP packets, destined for P3, form the chaff

part of S2. Under H0, P1 and P2 engage in independent VoIP conversations while

P3 does the same job as in H1. Hence, VoIP packet timings in S1 and those in

S2 are independent under H0. Under both hypotheses, the timings of network

control/management packets from P1 and A2 (except beacon frames of A2) are

also included in S1 and S2.

We used ∆ = 150ms in the detection algorithms, because 150ms is the upper

bound of acceptable end-to-end delays of VoIP packets recommended by ITU-T

recommendation G.114 [67]. We first tested DAC with various p∆ ranging from 10

to 400. Similar to the result on LBL TCP traces, the miss detection probability

was higher than 0.55 in every case due to the bursty chaff transmissions (i.e.,

bursty FTP transmissions from A2 to P3). Table 2.4 shows the error probabilities

of NBFD, the wavelet analysis, and RP. As in the test using LBL traces, we used

ǫ = 0.05 for NBFD; for the wavelet analysis and RP, the crossover error rates

and the corresponding thresholds are listed in the table. NBFD and the wavelet

analysis outperformed RP, and they displayed vanishing error probabilities as the
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Table 2.4: Performance on MSN VoIP data. NBFD parameters are w = 2s,
α = ∆ = 0.15s, and ǫ = 0.05. The numbers of experiments are 162, 81, and 40
for observation duration 80s, 160s, and 320s, respectively. Under H0 and H1, the
average rate is (λ1, λ2) = (26.8, 34.9). The fraction of chaff in H1 traffic is 0.18.

NBFD Wavelet RP

Time PF PM κ PF PM th PF PM

80s 0.086 0.056 0.14 0.093 0.093 949 0.086 0.099

160s 0 0.049 0.17 0.012 0.012 989 0.049 0.074

320s 0 0 0.23 0 0 1005 0.075 0.050

observation duration increases.

In all the tests we executed, NBFD and the wavelet analysis consistently out-

performed DAC and RP. Even though the wavelet analysis performed well over

most traces, we need to recall that the results in Table 2.3 and Table 2.4 were

possible because its threshold κ was set a posteriori to minimize its error prob-

abilities. If neither a training data set nor a parametric model is available, we

have no clear standard to set κ. For the further comparison of NBFD and the

wavelet analysis, Fig. 2.10 shows PF and PM of NBFD and the wavelet analysis

with various thresholds. We can observe that the optimal κ of the wavelet analysis

varies significantly for different observation durations and different test traces. For

instance, in the test result for synthetic Poisson traffic, κ ≈ 0.25 gave the best

performance when the observation duration is 80s, but it resulted in PM ≈ 0.85

for the 20s case. In addition, for the fixed observation duration of 80s, the optimal

κ for the Poisson traffic (≈ 0.25) and that for the VoIP traffic (≈ 0.15) are quite

different. In contrast, for NBFD, it can be observed that ǫ = 0.05 results in almost

optimal performance in every case. Especially, in every test, its false alarm prob-

ability vanished as the observation duration increases. This suggests that under

H0, the difference between R̄(t) and τ̄(t) of NBFD is well bounded by ǫ = 0.05.
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Figure 2.10: False alarm and miss detection probabilities of the wavelet analysis
and NBFD with various thresholds.

2.6 Proofs

2.6.1 Proof of Theorem 2.3.1

We use the following lemma about the relation between BiBGM with ∆ and

Bounded-Greedy-Match (BGM) [13] with 2∆ (For the detail of BGM, refer to
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Section 4.A of [14]).

Lemma 2.6.0.1 Running BiBGM on (si)
2
i=1 with ∆ is equivalent to the following:

1. Increase all the epochs of s2 by ∆.

2. Apply BGM with the delay constraint 2∆ to the modified measurements.

Proof of Lemma 2.6.0.1: Let ŝ2 be a sequence generated by increasing every

epoch in s2 by ∆ (i.e., ŝ2(i) = s2(i)+∆, 1 ≤ i ≤ |S2|). Then, replacing s2(n) with

ŝ2(n)−∆ in Table 2.1 results in exactly the same pseudocode with BGM with 2∆

on (s1, ŝ2) (see Table 3 in [14] for the pseudocode). �

Note that (a, b) ∈ S1 × S2 and |a − b| < ∆ if and only if (a, b +∆) ∈ S1 × Ŝ2

and b + ∆ ∈ [a, a + 2∆]. Hence, the optimal partitioning of (si)
2
i=1 is equivalent

to partitioning (s1, ŝ2) into the unidirectional flow part (with the delay constraint

2∆) and the chaff part such that the flow part is maximized; BGM with 2∆ was

proved in [13] to achieve the optimal partitioning of (s1, ŝ2). Thus, Lemma 2.6.0.1

implies the result.

2.6.2 Proof of Theorem 2.3.2

Let Ŝ2 denote the point process with Ŝ2(i) = S2(i)+∆, i ≥ 1. Theorem 4.2 in [14]

showed that if we run BGM with 2∆ on (S1, Ŝ2), the fraction of the matched

epochs in total epochs converges a.s. to the following:




2λ1λ2(1− e2∆(λ1−λ2))

(λ1 + λ2)(λ2 − λ1e2∆(λ1−λ2))
if λ1 6= λ2

2λ∆

1 + 2λ∆
if λ1 = λ2 = λ

Therefore, Lemma 2.6.0.1 implies the result.
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2.6.3 Proof of Theorem 2.3.3

We first introduce the following lemma about the statistical behavior of R̄(t) under

H1.

Lemma 2.6.0.2 Suppose that the distributions of (Si)
2
i=1 under H1 satisfy the

conditions that (i) S1 and S2 have rates λ1 and λ2 respectively, (ii) (F1, F2) is a

bidirectional flow with rate13 λf , and (iii) W1 and W2 are homogeneous Poisson

processes. Then, under every distribution in H1, lim inft→∞ R̄(t) ≥ θ(λ1, λ2, λf ) a.s.,

where θ(λ1, λ2, λf ) is defined as




2λ1 − 2λ2(
λ1−λf

λ2−λf
)e2∆(λ1−λ2)

(λ2 + λ1)(1− (
λ1−λf

λ2−λf
)e2∆(λ1−λ2))

if λ1 6= λ2

λf + 2λ(λ− λf )∆

λ(1 + 2(λ− λf )∆)
if λ1 = λ2 = λ

Proof of Lemma 2.6.0.2: Let N(t), Nf (t), and Nc(t) denote the number of

epochs of (Si)
2
i=1, (Fi)

2
i=1, and (Wi)

2
i=1 in [0, t], respectively. M(t) denotes the

number of the matched epochs found by running BiBGM over (Si)
2
i=1 in [0, t].

Consider running BiBGM on (Fi)
2
i=1 and (Wi)

2
i=1 separately in [0, t]: M̂(t) de-

notes the sum of the number of the matched epochs in (Fi)
2
i=1 and that in (Wi)

2
i=1,

and R̄w(t) denotes the fraction of the matched epochs in (Wi)
2
i=1. Theorem 2.3.1

implies that running BiBGM on (Si)
2
i=1 results in a greater or an equal number of

matched epochs than running BiBGM on (Fi)
2
i=1 and (Wi)

2
i=1 separately. There-

fore,

M(t) ≥ M̂(t) = Nf (t) +Nc(t)R̄w(t),

M(t)

N(t)
≥ Nf (t)

N(t)
+

Nc(t)

N(t)
R̄w(t) =

Nf (t)/t

N(t)/t
+

Nc(t)/t

N(t)/t
R̄w(t).

13If N1(t), N2(t), and NF (t) denote the number of epochs of S1, S2, and F1 in [0, t], respec-

tively, then limt→∞

Ni(t)
t

= λi a.s. for i = 1, 2, and limt→∞

NF (t)
t

= λf a.s..
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We have M(t)
N(t)

= R̄(t), limt→∞
Nf (t)/t

N(t)/t
=

2λf

λ1+λ2
a.s., limt→∞

Nc(t)/t
N(t)/t

=
λ1+λ2−2λf

λ1+λ2

a.s., and limt→∞ R̄w(t) = φ(λ1−λf ,λ2−λf ) a.s., where φ is defined as in Theorem 2.3.2.

Thus,

lim inf
t→∞

R̄(t) ≥ 2λf

λ1+λ2
+

λ1+λ2−2λf

λ1+λ2
φ(λ1−λf ,λ2−λf ) a.s..

It can be shown that the right hand side is θ(λ1, λ2, λf ). �

Let η be any fixed number in (0, 2min{λ1,λ2}
λ1+λ2

) and τ be the suggested threshold

for η. Then, there exists a positive λ̂f such that
λ̂f

λ1+λ2
= η

4
. Let h(x) , θ(λ1, λ2, x).

It can be checked that h(x) is strictly increasing in [0, min{λ1, λ2}], and h(λ̂f ) is

equal to τ .

(i) Miss detection probability: Suppose H1 is true and R ≥ η a.s.. Then,

R =
2λf

(λ1+λ2)
and λf = (λ1+λ2)

2
R > λ̂f , because R ≥ η > η

2
. Lemma 2.6.0.2 and the

monotonicity of h give

lim inf
t→∞

R̄(t) ≥ θ(λ1,λ2,λf ) = h(λf ) > h(λ̂f ) = τ a.s.

Hence, lim
t→∞

Pr(R̄(t) < τ) = 0.

(ii) False alarm probability: Note that h(0) = φ(λ1,λ2). Under H0,

lim
t→∞

R̄(t) = φ(λ1,λ2) = h(0) < h(λ̂f ) = τ a.s.,

and thus lim
t→∞

Pr(R̄(t) ≥ τ) = 0. Furthermore, Lemma 2.6.0.1 and Theorem 6.4

in [14] imply the exponential decay of the false alarm probability.

2.6.4 Proof of Theorem 2.4.1

We first introduce a useful lemma.
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Figure 2.11: In this example, M = 2, a1; 1 = 1, a1; 2 = 3, a1; 3 = 5, a2; 1 = 2, and
a2; 2 = 4. We ran BiBGM on (Si)

2
i=1 and marked the matches by the arrows. Some

matches consist of epochs in two different partitions, and they are marked by the
dashed arrows. The matches consisting of epochs in a single partition are marked
by the solid arrows. One can observe that each solid arrow in (Si)

2
i=1 can be found

either in (S
(1)
i )2i=1 or (S

(2)
i )2i=1.

Lemma 2.6.0.3 Suppose that S1 and S2 are non-homogeneous Poisson processes,

and their local intensities always stay in [λmin, λmax], where λmin > 0. As illus-

trated in Fig. 2.11, we partition [0, ∞) into a countable number of subintervals: Ii

denotes the ith subinterval, Ti is the length of Ii, and d(t) denotes the number of

Iis with Ii ⊂ [0, t]. Suppose d(t)
t

decreases to 0 as t grows.

Let M be a finite natural number and suppose we partition the set {Ii, i ≥ 1}

into M subsets {Iak; i , i ≥ 1}, 1 ≤ k ≤ M , where (ak; i)i≥1, 1 ≤ k ≤ M , are

subsequences of (1, 2, 3, . . .). For 1 ≤ k ≤ M , we use the epochs of (Si)
2
i=1 in

(Iak; i)i≥1 to generate point processes (S
(k)
i )2i=1, as described in Fig. 2.11:

1. Initially, S
(k)
1 and S

(k)
2 have no epoch.

2. For n ≥ 1, for i = 1, 2, subtract
∑ak;n−1

j=1 Tj from all the epochs of Si in the

interval Iak;n, add
∑n−1

j=1 Tak; j to them, and add these epochs to S
(k)
i .

Let N(t) denote the number of epochs of (Si)
2
i=1 in [0, t] and N (k)(t) denote
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the number of epochs of (S
(k)
i )2i=1, whose original epoch in (Si)

2
i=1 is in [0, t]; by

definition, N(t) =
∑M

k=1N
(k)(t). We run BiBGM on (Si)

2
i=1 and let R̄(t) denote

the fraction of the matched epochs in the total epochs in [0, t]. In addition, we run

BiBGM on (S
(k)
i )2i=1 separately for each k, and N

(k)
f (t) denotes the number of the

matched epochs among the earliest N (k)(t) epochs of (S
(k)
i )2i=1. And, we define R̂(t)

as

∑M
k=1N

(k)
f (t)

N(t)
.

Then, limt→∞ R̄(t)− R̂(t) = 0 almost surely.

Proof of Lemma 2.6.0.3: Let Nf (t) denote the number of BiBGM-matched

epochs of (Si)
2
i=1 in [0, t]. Then, by definition, R̄(t) =

Nf (t)

N(t)
. Let di denote the

time that the ith division occurs; in other words, di is the time that the ith jump

of d(t) occurs. Formally, we say that a BiBGM match (t1, t2), where ti is an epoch

of Si, is broken if t1 ∈ Ia, t2 ∈ Ib, and a 6= b. Let Ñf (t) denote the number of

epochs of the unbroken BiBGM matches in [0, t]. As described in Fig. 2.11, if an

unbroken BiBGM match (t1, t2) in [0, t] is such that t1 and t2 are included in a

single partition Iak; i , then its shifted version can be found in the [0, tρk(t)] interval

of (S
(k)
i )2i=1, where ρk(t) is the fraction of (

⋃
i≥1 Iak; i) ∩ [0, t] in [0, t]. In addition,

Theorem 2.3.1 implies that N
(k)
f (t) is no less than the number of epochs belonging

to the shifted unbroken matches in [0, tρk(t)] of (S
(k)
i )2i=1 (i.e., solid arrows in

Fig. 2.11). Therefore,
∑M

k=1N
(k)
f (t) ≥ Ñf (t).

For j = 1, 2, let Xj(i) denote the number of epochs of Sj in [max{di−1+di
2

, di−

∆}, min{di+di+1

2
, di +∆}), where d0 , −d1. The number of epochs of the broken

matches in [0, t] is bounded above by
∑d(t)

i=1 X1(i) +
∑d(t)

i=1 X2(i). Hence,

Ñf (t) ≥ Nf (t)−
∑d(t)

i=1 X1(i)−
∑d(t)

i=1 X2(i)
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There exist sequences of i.i.d. Poisson random variables (X̄1(i))i≥1 and (X̄2(i))i≥1

with mean 2λmax∆ such that Xj(i) ≤ X̄j(i) a.s. for i ≥ 1, j = 1, 2. Hence,

∑M
k=1N

(k)
f (t) ≥ Nf (t)−

∑d(t)
i=1 X̄1(i)−

∑d(t)
i=1 X̄2(i),

R̄(t)− R̂(t) ≤
∑d(t)

i=1 X̄1(i)

N(t)
+

∑d(t)
i=1 X̄2(i)

N(t)
.

For j = 1, 2, we have

lim sup
t→∞

d(t)/t

N(t)/t

∑d(t)
i=1 X̄j(i)

d(t)
= 0 a.s..

Hence,

lim sup
t→∞

(R̄(t)− R̂(t)) ≤ 0 a.s..

Similarly, we can partition (S
(k)
i )2i=1 at time points (dk; i)i≥1, where dk; i ,

∑i
j=1 Tak; j , and use the number of unbroken BiBGM matches of (S

(k)
i )2i=1 in

[0, tρk(t)], 1 ≤ k ≤ M , to obtain a lower bound on the number of BiBGM

matches of (Si)
2
i=1 in [0, t]. Then, based on the similar argument, we can de-

rive lim inft→∞(R̄(t) − R̂(t)) ≥ 0 a.s.. Hence, we have limt→∞(R̄(t) − R̂(t)) = 0

a.s., and the proof is complete. �

The proof of Theorem 2.4.1 consists of two parts: one for proving the vanishing

false alarm probability under H0, and the other for proving the vanishing miss

detection probability under H1.

False Alarm Probability

Suppose that H0 is true and the distribution of (Si)
2
i=1 satisfies the assumptions

of the theorem. S1 and S2 are independent non-homogeneous Poisson processes,

and so are the output of ITA, S̄1 and S̄2. Suppose we run BiBGM on (Si)
2
i=1 and

let R̄(t) denote the fraction of the matched epochs in the total epochs in [0, t].
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We also run BiBGM on (S̄i)
2
i=1 and let T̄(t) denote the fraction of the matched

epochs in the total epochs in [0, ⌊ t
2(w+α)

⌋w]. In the following, we will show that

R̄(t)− T̄(t) converges a.s. to 0.

Because limt→∞
c(t)
t

= 0, there are at most a countable number of intensity

changes. Let (ci)i≥1 denote the increasing sequence of the time points at which

(λ1(t), λ2(t)) changes. We partition [0, ∞) into a countable number of subintervals

{Ii , [ci−1, ci), i ≥ 1}. For 1 ≤ k ≤ M0, (ak; i)i≥1 denotes the increasing sequence

of all the indices of Iis in which (λ1(t), λ2(t)) = ~µ(k). For each k, we use the epochs

of (Si)
2
i=1 in (Iak; i)i≥1 to generate a pair of point processes (S

(k)
i )2i=1, as described

in Lemma 2.6.0.3.

Let N(t) denote the number of epochs of (Si)
2
i=1 in [0, t]. Suppose we run

BiBGM on (S
(k)
i )2i=1 separately for 1 ≤ k ≤ M0. N (k)(t) denotes the number

of epochs of (S
(k)
i )2i=1 in [0, tρk(t)], and N

(k)
f (t) denotes the number of BiBGM-

matched epochs among those N (k)(t) epochs. Then, Lemma 2.6.0.3 implies

limt→∞

(
R̄(t)−

∑M
k=1N

(k)
f (t)

N(t)

)
= 0 a.s.. And,

∑M0

k=1N
(k)
f (t)

N(t)
=

t

N(t)

M0∑

k=1

ρk(t)
N (k)(t)

tρk(t)

N
(k)
f (t)

N (k)(t)
.

By analyzing the limiting behaviors of
t

N(t)
, ρk(t)

N (k)(t)

tρk(t)
, and

N
(k)
f (t)

N (k)(t)
(use The-

orem 2.3.2), we have

lim
t→∞

t

N(t)

M0∑

k=1

ρk(t)
N (k)(t)

tρk(t)

N
(k)
f (t)

N (k)(t)
=

∑M0

k=1 ρk(µ
(k)
1 + µ

(k)
2 )φ

(µ
(k)
1 , µ

(k)
2 )

∑M0

k=1 ρk(µ
(k)
1 + µ

(k)
2 )

a.s.

where ρk , limt→∞ ρk(t) and φ is defined in Theorem 2.3.2. Then, by

Lemma 2.6.0.3,

lim
t→∞

R̄(t) =

∑M0

k=1 ρk(µ
(k)
1 + µ

(k)
2 )φ

(µ
(k)
1 , µ

(k)
2 )

∑M0

k=1 ρk(µ
(k)
1 + µ

(k)
2 )

a.s. (2.3)
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Figure 2.12: This figure illustrates a simple case that (λ1(t), λ2(t)) can only take

either (µ
(1)
1 , µ

(1)
2 ) or (µ

(2)
1 , µ

(2)
2 ). The bars filled with slant lines represent the

intervals in which λi(t) = µ
(1)
i , and the blue bars represent the intervals in which

λi(t) = µ
(2)
i . In this example, J2 and J4 are in C.

Now, we will prove that T̄(t) also converges almost surely to the same constant.

Let c̄i ,
w

2(w+α)
ci, ∀i. As depicted in Fig. 2.12, the local intensities of S̄1 and S̄2,

denoted by (λ̄1(t), λ̄2(t)), may be equal to (µ
(j)
1 , µ

(k)
2 ) with j 6= k, and it happens

only if any c̄i is in [w⌊ t
w
⌋, w(⌊ t

w
⌋+ 1)). Define C as a set

{[w(k − 1), wk) : k ∈ N, ∃ i s.t. c̄i ∈ [w(k − 1), wk)}

As illustrated in Fig. 2.12, we partition [0, ∞) of (S̄i)
2
i=1 into the intervals in C

and the gap intervals between two adjacent intervals in C, and (Ji)i≥1 denotes

the sequence of these intervals arranged in a time order. {ā0; i, i ≥ 1} denotes

the increasing sequence of the indices of Jis satisfying Ji ∈ C. For 1 ≤ k ≤

M0, {āk; i, i ≥ 1} denotes the increasing sequence of the indices of Jis satisfying

(λ̄1(t), λ̄2(t)) = ~µ(k), ∀t ∈ Ji. Then, {Ji, i ≥ 1} can be partitioned into the
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(M0 + 1) sets, {Jāk; i , i ≥ 1}, 0 ≤ k ≤ M0. For 0 ≤ k ≤ M0, we use the epochs

of (S̄i)
2
i=1 in (Jāk; i)i≥1 to generate (S̄

(k)
i )2i=1, in the same manner as we generate

(S
(k)
i )2i=1 based on (Iak; i)i≥1 in Lemma 2.6.0.3. Then, based on Lemma 2.6.0.3

and (S̄
(k)
i )2i=1 (0 ≤ k ≤ M0), we can use the similar argument as in obtaining

limt→∞ R̄(t) and show

lim
t→∞

T̄(t) =

∑M0

k=1 ρk(µ
(k)
1 + µ

(k)
2 )φ

(µ
(k)
1 , µ

(k)
2 )

∑M0

k=1 ρk(µ
(k)
1 + µ

(k)
2 )

a.s. (2.4)

From (2.3) and (2.4), we can see that R̄(t) − T̄(t) converges almost surely to

0 as t grows. Hence, for any positive ǫ, the false alarm probability vanishes as t

grows:

lim
t→∞

PF (t) = lim
t→∞

Pr(R̄(t)− T̄(t) > ǫ) = 0

Miss Detection Probability

Suppose that H1 is true and the distribution of (Si)
2
i=1 satisfies the assumptions

of the theorem including R ≥ η a.s. Due to the almost sure convergence of R(t),

‘R = lim inft→∞R(t) ≥ η a.s.’ is equivalent to

∑M1

k=1 ρk(λ
(k)
f1 + λ

(k)
f2 )∑M1

k=1 ρk(λ
(k)
1 + λ

(k)
2 )
≥ η, (2.5)

where ρk , limt→∞ ρk(t). In addition, the first assumption of the theorem guar-

antees that S̄1 and S̄2 are independent non-homogeneous Poisson processes. We

run BiBGM on (Si)
2
i=1 and let R̄(t) denote the fraction of the matched epochs

in the total epochs in [0, t]. We also run BiBGM on (S̄i)
2
i=1 and let T̄(t) denote

the fraction of the matched epochs in the total epochs in [0, ⌊ t
2(w+α)

⌋w]. First of

all, by following exactly the same steps as in the proof of vanishing false alarm
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probability, we can derive

lim
t→∞

T̄(t) =

∑M1

k=1 ρk(λ
(k)
1 + λ

(k)
2 )φ

(λ
(k)
1 , λ

(k)
2 )

∑M1

k=1 ρk(λ
(k)
1 + λ

(k)
2 )

a.s. (2.6)

Let (ci)i≥1 denote the increasing sequence of the time points at which ~λ(t)

changes, and we partition [0, ∞) into a countable number of subintervals {Ii ,

[ci−1, ci), i ≥ 1}. For 1 ≤ k ≤ M1, let (ak; i)i≥1 denote the increasing sequence of

all the indices of Iis satisfying ~λ(t) = ~λ(k), ∀t ∈ Ii. We use the epochs of (Si)
2
i=1

in (Iak; i)i≥1 to generate a pair of point processes (S
(k)
i )2i=1, as in Lemma 2.6.0.3.

Then, based on Lemma 2.6.0.2, Lemma 2.6.0.3, and (S
(k)
i )2i=1 (1 ≤ k ≤ M1), we

can use the similar argument as in obtaining limt→∞ R̄(t) in the proof of vanishing

false alarm probability and derive

lim inf
t→∞

R̄(t) ≥
∑M1

k=1 ρk(λ
(k)
1 + λ

(k)
2 )θ

(λ
(k)
1 , λ

(k)
2 , λ

(k)
f1 +λ

(k)
f2 )

∑M1

k=1 ρk(λ
(k)
1 + λ

(k)
2 )

a.s.

where θ is defined in Lemma 2.6.0.2. For fixed λ1 and λ2, θ(λ1,λ2,λf ) is a strictly

increasing function of λf , and it decreases to φ(λ1, λ2) as λf decays to 0. Hence, if

we define γ as

min
(ρk)

M1
k=1

∑M1

k=1 ρk(λ
(k)
1 + λ

(k)
2 )θ

(λ
(k)
1 , λ

(k)
2 , λ

(k)
f1 +λ

(k)
f2 )

∑M1

k=1 ρk(λ
(k)
1 + λ

(k)
2 )

−
∑M1

k=1 ρk(λ
(k)
1 + λ

(k)
2 )φ

(λ
(k)
1 , λ

(k)
2 )

∑M1

k=1 ρk(λ
(k)
1 + λ

(k)
2 )

,

where the minimization is over {(ρk)M1
k=1 : (2.5) holds}, then it can be easily seen

that γ is strictly greater than 0. Set ǭ = 1
3
γ, and let ǫ be an arbitrary number in

(0, ǭ]. Then, if the condition (2.5) holds,

lim inf
t→∞

(R̄(t)− T̄(t)) ≥ γ > 2ǫ a.s..

Therefore, as long as the condition (2.5) holds, the miss detection probability

vanishes as t grows:

lim
t→∞

PM(t) = lim
t→∞

Pr(R̄(t)− T̄(t) < ǫ) = 0.
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CHAPTER 3

TOPOLOGY ATTACK OF A POWER GRID

3.1 Introduction

A defining feature of a smart grid is its abilities to monitor the state of a large

power grid, to adapt to changing operating conditions, and to react intelligently

to contingencies, all of which depend critically on a reliable and secure cyber-

infrastructure. It has been widely recognized that the heavy reliance on a wide

area communications network for grid monitoring and real-time operation comes

with increasing security risks of cyber-attacks. See [72] for a vulnerability analysis

of energy delivery control systems.

While information security has been a major focus of research for over half a

century, the mechanisms and the impacts of attack on cyber physical systems such

as the power grid are not yet well understood, and effective countermeasures are

still lacking.

We consider a form of “man-in-the-middle” (MiM) attack [73] on the topology

of a power grid. An MiM attack exploits the lack of authentication in a system,

which allows an adversary to impersonate a legitimate participant. In the context

of monitoring a transmission grid, sophisticated authentications are typically not

implemented due to the need of reducing communication delay and the presence of

legacy communication equipment. If an adversary is able to gain access to remote

terminal units (RTUs) or local data concentrators, it is possible for the adversary

to replace actual data packets with carefully constructed malicious data packets

and impersonate a valid data source.
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MiM attacks on a power grid may have severe consequences. The adversary

can mislead the control center that the grid is operating under a topology different

from that in reality. Such an attack, if launched successfully and undetected by

the control center, will have serious implications: a grid that is under stress may

appear to be normal to the operator thereby delaying the deployment of necessary

measures to ensure stability. Similarly, a grid operating normally may appear to

be under stress to the operator, potentially causing load shedding and other costly

remedial actions by the operator.

Launching a topology attack, fortunately, is not easy; a modern energy man-

agement system is equipped with relatively sophisticated bad data and topology

error detectors, which alerts the operator that either the data in use are suspi-

cious or there may indeed be changes in the network topology. When there are

inconsistencies between the estimated network topology (estimated mostly using

switch and breaker states) and the meter data (e.g., there is significant amount of

power flow on a line disconnected in the estimated topology,) the operator takes

actions to validate the data in use. Only if data and the estimated topology pass

the bad data test, will the topology change be accepted and updates be made for

subsequent actions.

The attacks that are perhaps the most dangerous are those that pass the bad

data detection so that the control center accepts the change (or the lack of change)

of network topology. To launch such attacks, the adversary needs to modify si-

multaneously the meter data and the network data (switch and breaker states) in

such a way that the estimated topology is consistent with the data. Such attacks

are referred to as undetectable attacks; they are the main focus of this study.
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3.1.1 Summary of Results and Organization

We aim to achieve two objectives. First, we characterize conditions under which

undetectable attacks are possible, given a set of vulnerable meters that may be

controlled by an adversary. To this end, we consider two attack regimes based on

the information set available to the attacker. The more information the attacker

has, the stronger its ability to launch a sophisticated attack that is hard to detect.

The global information regime is where the attacker can observe all meter and

network data before altering the adversary-controlled part of them. Although it is

unlikely in practice that an adversary is able to operate in such a regime, in ana-

lyzing the impact of attacks, it is typical to consider the worst case by granting the

adversary additional power. In Section 3.3, we present a necessary and sufficient

algebraic condition under which, given a set of adversary controlled meters, there

exists an undetectable attack that misleads the control center with an incorrect

“target” topology. This algebraic condition provides not only numerical ways to

check if the grid is vulnerable to undetectable attacks but also insights into which

meters to protect to defend against topology attacks. We also provide specific

constructions of attacks and show certain optimality of the proposed attacks.

A more practically significant situation is the local information regime where

the attacker has only local information from those meters it has gained control.

Under certain conditions, undetectable attacks exist and can be implemented easily

based on simple heuristics. We present in Section 3.4 intuitions behind such simple

attacks and implementation details.

The second objective is to provide conditions under which topology attack

cannot be made undetectable. Such a condition, even if it may not be the tightest,

59

74



provides insights into defense mechanisms against topology attacks. In Section 3.5,

we show that if a set of meters satisfying a certain branch covering property are

protected, then topology attacks can always be detected. In practice, protecting a

meter may be carried out at multiple levels, from physical protection measures to

software protection schemes using more sophisticated authentication protocols.

The rest of the chapter is organized as follows. Section 3.2 presents mathemati-

cal models of state estimation, bad data test, and topology attacks. In Section 3.3,

we study topology attacks in the global information regime. The algebraic condi-

tion for an undetectable attack is presented, and construction of a cost-effective

undetectable attack is provided. Section 3.4 presents a heuristic attack for the

attacker with local information. Based on the algebraic condition presented in

Section 3.3, Section 3.5 provides a graph theoretical strategy to add protection to

a subset of meters to prevent undetectable attacks. Section 3.6 presents simulation

results to demonstrate practical uses of our analysis and feasibility of the proposed

attacks.

3.2 Preliminaries

In this section, we present models for the power network, measurements, and

adversary attacks. We also summarize essential operations such as state estimation

and bad data detection that are targets of data attacks.
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3.2.1 Network and Measurement Models

The control center receives two types of data from meters and sensors deployed

throughout the grid. One is the digital network data s ∈ {0, 1}d, which can be

represented as a string of binary bits indicating the on and off states of various

switches and line breakers. The second type is the analog meter data z, which is

a vector of bus injection and line flow measurements.

Without an attack or a sensing error, s gives the true breaker states. Each s ∈

{0, 1}d corresponds to a system topology, which is represented by a directed graph

G = (V,E), where V is the set of buses and E is the set of connected transmission

lines. For each physical transmission line between two buses (e.g., i and j), we

assign an arbitrary direction for the line (e.g., (i, j)), and (i, j) is in E if and

only if the line is connected. In addition, E0 denotes the set of all lines (with

the assigned directions), both connected and disconnected. Assigning arbitrary

directions for lines is not intended to deliver any physical meaning, but only for

ease of presentation.

The state of a power system is defined as the vector x of voltage phasors on all

buses. In the absence of attacks and measurement noise, the meter data z collected

by the SCADA system are related to the system state x and the system topology

G via the AC power flow model [51]:

z = h(x,G) + e (3.1)

where z typically includes real and reactive parts of bus injection and line flow

measurements, h is the nonlinear measurement function of x and G, and e the

additive noise.

A simplified model, one that is often used in real-time operations such as the
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computation of real-time LMP, is the so-called DC model [51] where the nonlinear

function h is linearized near the operating point. In particular, the DC model is

given by

z = Hx+ e (3.2)

where z ∈ Rm consists of only the real parts of injection and line flow measure-

ments, H ∈ Rm×n is the measurement matrix, x ∈ Rn is the state vector consisting

of voltage phase angles at all buses except the slack bus, and e ∈ Rm is the Gaus-

sian measurement noise with a diagonal covariance matrix Σ.

The fact that the measurement matrix H depends on the network topology G

is important, although we use the notation H without explicit association with

its topology G for notational convenience. For ease of presentation, consider the

noiseless measurement z = Hx. If an entry zk of z is the measurement of the line

flow from i to j of a connected line in G, zk is Bij(xi − xj) where Bij is the line

susceptance and xi is the voltage phase angle at bus i. The corresponding row of

H is equal to

h(i,j) , [0 · · · 0 Bij︸︷︷︸ 0 · · · 0 −Bij︸ ︷︷ ︸ 0 · · · 0].

ith entry jth entry

(3.3)

On the other hand, if zk is the measurement of the line flow through a disconnected

line in G, zk is zero, and the corresponding row of H consists of all zero entries.

If zk is the measurement of bus injection at i, it is the sum of all the outgoing

line flows from i, and the corresponding row of H is the sum of the row vectors

corresponding to all the outgoing line flows.

We consider both AC and DC power flow models. The DC model allows us

to obtain a succinct characterization of undetectable attacks as described in Sec-

tion 3.3. However, these results hold only locally around the operating point,

62

77



because the results are obtained from the linearized model. General results for

the more realistic (nonlinear) AC model are difficult to obtain. We present in

Section 3.4 a heuristic attack that are undetectable for both AC and DC models.

It was shown in [39] that using the DC model and linear state estimator in

numerical analysis of an attack tends to exaggerate the impact of the attack.

Hence, for accurate analysis, we use the AC model and nonlinear state estimator

in the numerical simulations presented in Section 3.6.

3.2.2 Adversary Model

The adversary aims at modifying the topology estimate from G = (V,E) to a

different “target” topology Ḡ = (V, Ē). Note that G and Ḡ have the same set

of vertices. In other words, we only consider the attacks aimed at perturbing

transmission line connectivities1. In addition, we assume that the power system

is observable regardless an attack is present or not: i.e., the measurement matrix

in the DC model always has full rank. This means that the adversary avoids

misleading the control center with drastic system changes (e.g., division into two

diconnected parts) that may draw too much attention of the control center2. We

call the lines not common to both Ē and E (i.e., lines in Ē△E , (Ē \ E) ∪ (E \ Ē))

target lines and the buses at the ends of the target lines target buses.

To alter the network topology, the adversary launches a man-in-the-middle

1The attacks aiming to split or combine buses are out of scope of this chapter. Such attacks
require modifying the measurements of breaker states inside substations. If the control center
employs generalized state estimation [74], such modification invokes substation-level state esti-
mation which leads to a robust bad data test. Hence, such attacks are harder to avoid detection.

2In fact, the results to be presented in this chapter also hold for the general case where the
target topology can be anything (e.g., the system may be divided into several disconnected parts),
if the control center employs the same bad data test even when the network is unobservable.
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Figure 3.1: Attack Model with Generalized State Estimation

attack as described in Fig. 3.1: it intercepts (s, z) from RTUs, modifies part of

them, and forwards the modified version (s̄, z̄) to the control center.

Throughout this chapter, except in Section 3.4, we assume that the adversary

has global information, i.e., it knows network parameters and observes all entries

of (s, z) before launching the attack, although it may modify only the entries it

gained control of. Such an unlimited access to network parameters and data is

a huge advantage to the attacker. In Section 3.5, countermeasures are designed

under this assumption so that they can be robust to such worst case attacks.

The mathematical model of an attack to modify G to Ḡ is as follows (the

notation that a bar is on a variable denotes the value modified by the adversary):

s̄ = s+ b (mod 2),

z̄ = z+ a(z), a(z) ∈ A,
(3.4)

where s̄ is the modified network data corresponding to Ḡ, b ∈ {0, 1}d represents

the modifications on the network data s, a(z) ∈ Rm denotes the attack vector

added to the meter data z, and A ⊂ Rm denotes the subspace of feasible attack

vectors.

We assume that the adversary can modify the network data accordingly for any
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target topology that deems to be valid to the control center. This is the opposite of

the assumption employed by most existing studies on state attacks where network

data that specify the topology are not under attack.

For the attack on analog meter data, we use the notation a(z) to emphasize

that the adversary can design the attack vector based on the whole meter data

z. This assumption will be relaxed in Section 3.4 to study an attack with local

information. In addition, A has a form of {c ∈ Rm : ci = 0, i ∈ IS} where IS

is the set of indices of secure meter data entries that the adversary cannot alter

and {1, . . . ,m} \ IS represents the adversary-controlled entries. Note that A fully

characterizes the power of the adversary, and the mapping a : Rm → A fully

defines the attack strategy.

3.2.3 State Estimation, Bad Data Test, and Undetectable

Attacks

As illustrated in Fig. 3.1, the control center executes generalized state estimation

(GSE) [74] with network and meter data as inputs; the inputs are (s, z) in the

absence of an attack and (s̄, z̄) if there is an attack. GSE regards both network

and meter data as possibly erroneous. Once the bad data test detects inconsistency

among data and estimates, GSE filters out the outliers from the data and searches

for a new pair of topology and state estimates that fit the data best. Our focus

is on the attacks that can pass the bad data test such that no alarm is raised by

GSE.

Under the general AC model (3.1), if (s, z) is the input to GSE, and Ĝ is the

topology corresponding to s, the control center obtains the weighted least squares
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(WLS) estimate of the state x:

x̂ = argmin
y

(z− h(y, Ĝ))tΣ−1(z− h(y, Ĝ)).

Note that Ĝ = G in the absence of an attack while Ĝ = Ḡ in the presence of an

attack. In practice, nonlinear WLS estimation is implemented numerically [51].

Under the DC model (3.2), the WLS state estimator is a linear estimator with

a closed form expression

x̂ = argmin
y

(z− Ĥy)tΣ−1(z− Ĥy)

= (Ĥ tΣ−1Ĥ)−1Ĥ tΣ−1z,

where Ĥ is the measurement matrix for Ĝ. The linear estimator is sometimes used

as part of an iterative procedure to obtain the nonlinear WLS solution.

The residue error is often used at the control center for bad data detection [51].

In the so-called J(x̂) test [40], the weighted least squares error

J(x̂) = (z− h(x̂, Ĝ))tΣ−1(z− h(x̂, Ĝ))

is used in a threshold test:




bad data if J(x̂) > τ ,

good data if J(x̂) ≤ τ ,
(3.5)

where τ is the detection threshold, and it is determined to satisfy a certain false

alarm constraint α.

We define that an attack is undetectable if its detection probability is as low as

the false alarm rate of the detector. We assume that the J(x̂) test is used as the

bad data detector.
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Definition 3.2.1 An attack a to modify G to Ḡ is said to be undetectable if, for

any true state x, the J(x̂)-test with any false alarm constraint detects the attack

with the detection probability no greater than its false alarm rate.

In the absence of noise, the only source of bad data is, presumably, an attack.

In this case, the probabilistic statement of undetectability becomes a deterministic

one. A data attack (z + a(z), s̄) that modifies the topology from G to Ḡ is unde-

tectable if for every noiseless measurement z, there exists a state vector x̄ such

that z + a(z) = h(x̄, Ḡ). Unfortunately, such a nonlinear condition is difficult to

check.

Under the DC model, however, the undetectability condition has a simple al-

gebraic form. Let (s, z) be the input to GSE and H is the measurement matrix

for the topology corresponding to s. In the presence of an attack, GSE receives

(s̄, z̄) instead of (s, z), and H̄–the measurement matrix for the target topology

Ḡ–replaces H. In the absence of noise, the J(x̂)-detector is equivalent to checking

whether the received meter data is in the column space of the valid measurement

matrix. Thus, the equivalent undetectable topology attack can be defined by the

following easily checkable form:

Definition 3.2.2 An attack to modify G to Ḡ with the attack vector a is said to

be undetectable if

z+ a(z) ∈ Col(H̄), ∀z ∈ Col(H), (3.6)

where H and H̄ are the measurement matrices for G and Ḡ respectively, and Col(H)

is the column space of H and Col(H̄) the column space of H̄.
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3.3 Topology Attack with Global Information

We assume the DC model (3.2) and present the result for the existence of unde-

tectable topology attacks.

3.3.1 Condition for an Undetectable Attack

We first derive a necessary and sufficient algebraic condition for existence of an

undetectable attack that modifies G to Ḡ with the subspace A of feasible attack

vectors. To motivate the general result, consider first the noiseless case.

Noiseless Measurement Case

Suppose there is an undetectable attack a with a(z) ∈ A, ∀z ∈ Col(H). Then,

undetectability implies that z+a(z) ∈ Col(H̄), ∀z ∈ Col(H), and thus, Col(H) ⊂

Col(H̄,A).3

Now suppose Col(H) ⊂ Col(H̄,A). There exists a basis {c1, . . . , cp,d1, . . . ,dq}

of Col(H̄,A) such that {c1, . . . , cp} is a subset of columns of H̄ and {d1, . . . ,dq}

is a set of linearly independent vectors in A. For any z ∈ Col(H), since Col(H) ⊂

Col(H̄,A), there exist unique (αi)
p
i=1 ∈ Rp and (βj)

q
j=1 such that z =

∑p
i=1 αici +

∑q
j=1 βjdj. If we set a(z) = −∑q

j=1 βjdj, z + a(z) =
∑p

i=1 αici ∈ Col(H̄). In

addition, a(z) ∈ A for all z. Hence, there exists an undetectable attack with the

subspace A of feasible attack vectors.

The above arguments lead to the following theorem.

3Col(H̄,A) denotes the space spanned by the columns of H̄ and a basis of A.
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Theorem 3.3.1 There exists an undetectable attack to modify G to Ḡ with the

subspace A of feasible attack vectors if and only if Col(H) ⊂ Col(H̄, A).

Noisy Measurement Case

The following theorem states that the algebraic condition in Theorem 3.3.1 can

also be used in the noisy measurement case.

Theorem 3.3.2 There exists an undetectable attack to modify G to Ḡ with the

subspace A of feasible attack vectors if and only if Col(H) ⊂ Col(H̄, A).

In addition, if an attack a is such that Col(H) * Col(H̄, A), then for almost

every4 x ∈ Rn, when x is the true state, the detection probability for the attack

approaches 1 as the noise variances uniformly decrease to 0 (i.e., maxi(Σii), where

Σii is the (i, i) entry of Σ, decays to 0).

Proof: See Section 3.7.

Note that when the algebraic condition is not met, the attack can be detected

with high probability if the noise variances are sufficiently small. With this alge-

braic condition, we can check whether the adversary can launch an undetectable

attack with A for the target Ḡ. The condition will be used in Section 3.5 to con-

struct a meter protection strategy to disable undetectable attacks for any target

topology.

By finding the smallest dimension of A satisfying the condition, we can also

characterize the minimum cost of undetectable attacks for Ḡ; in the adversary’s

4This means “for all x ∈ Rn \ S, for some S ⊂ Rn with a zero Lebesgue measure”.
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point of view, a smaller dimension of A is preferred, because increasing the dimen-

sion of A necessitates compromising more RTUs or communication devices. In the

following section, we present an undetectable attack requiring a small number of

data modifications and prove its optimality for a class of targets by utilizing the

algebraic condition.

3.3.2 State-preserving Attack

This section presents a simple undetectable attack, referred to as state-preserving

attack. As the name suggests, the attack intentionally preserves the state in order

to have a sparse attack vector. We again motivate our result by considering first

the noiseless case.

Noiseless Measurement Case

Given z = Hx ∈ Col(H), the state-preserving attack sets a(z) equal to (H̄ −H)x.

Then, z + a(z) = H̄x ∈ Col(H̄); the attack is undetectable. Note that the state

x remains the same after the attack. Since H has full column rank, a(z) can be

simply calculated as

a(z) = (H̄ −H)x = (H̄ −H)(H tH)−1H tz. (3.7)

For a(z) above to be a valid attack vector, it is necessary to be a sparse vector

constrained by the meters, the data of which can be altered by the adversary.

To see an intuitive reason why H̄x−Hx is sparse, consider the simple case that

a line is removed from the topology while the state is preserved. In this case, the

line flows through all the lines, except the removed line, stay the same. Because,
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the line flow from i to j is determined by (i) (xi, xj) and (ii) whether i and j are

connected, and for most lines, these two factors remain the same. Hence, only few

entries are different between H̄x and Hx. Below, we will show that, for all state

x ∈ Rn, all entries of (H̄ −H)x are zeros except those associated with the target

lines.

As noted in [26], H can be decomposed as H = MBAt, where M ∈ Rm×l is the

measurement-to-line incidence matrix with l , |E0|, B ∈ Rl×l is a diagonal matrix

with the line susceptances in the diagonal entries, and At ∈ Rl×n is the line-to-bus

incidence matrix. Each column of M (each row of At) corresponds to a distinct line

in E0. For 1 ≤ j ≤ l, if the jth column of M corresponds to (a, b) ∈ E0, let v
+
j , a

and v−j , b. Then, M is defined such that Mij = ±1 if the ith meter (the meter

corresponding to the ith row of M) measures (i) the line flow from v±j to v∓j or (ii)

the injection at bus v±j ; otherwise, Mij = 0. For At, (At)ji = ±1 if v±j = i, and the

line corresponding to the jth row of At (or equivalently the jth column of M) is

connected in G; otherwise, (At)ji = 0. Note that M and B are independent of the

topology, but At does depend on G. Fig. 3.2 provides an example to illustrate the

structures of M , B, and At. Similarly, H̄ is decomposed as H̄ = MBĀt.

As illustrated in Fig. 3.2, the entries of BAtx ∈ Rl×1 correspond to the line

flows of all the lines in E0 when the state is x and the topology is G. Similarly, BĀtx

is the vector of line flows when the state is x and the topology is Ḡ. Since the states

are the same, the kth entry of BAtx and that of BĀtx are different only if the

corresponding line is connected in one of G and Ḡ while disconnected in the other.

Therefore, (BĀt − BAt)x has all zero entries except the entries corresponding to

the lines in Ē△E. Specifically, the entry corresponding to (i, j) ∈ Ē \ E assumes

fij(x) , Bij(xi−xj), and the entry corresponding to (i, j) ∈ E\Ē assumes −fij(x).
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Figure 3.2: The measurement, line, or bus corresponding to each row or column is
labled. Bus 1 is the slack bus. For the rows of M , ī denotes the injection meter at
bus i, and (i, j) the meter for the line flow from i to j.

Hence, (H̄ −H)x = M(BĀt − BAt)x is equal to

∑

(i,j)∈Ē\E

fij(x)m(i,j) −
∑

(i,j)∈E\Ē

fij(x)m(i,j) (3.8)

where m(i,j) is the column vector of M corresponding to (i, j). Note that m(i,j) is

a sparse vector that has nonzero entries only at the rows corresponding to the line

flow meters on the line (i, j) and the injection meters at i and j.

From (3.8), for any state x ∈ Rn, (H̄−H)x is a linear combination of elements

in {m(i,j) : (i, j) ∈ Ē△E}. Hence, the state-preserving attack, which sets a(z) =

(H̄−H)x, modifies at most the line flow meters on the target lines and the injection

meters at the target buses.

We now show in the next two theorems that, under certain conditions, the state-
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preserving attack has the least cost in the sense that it requires the adversary to

modify the smallest number of meter data (i.e., the smallest dimension for A).

Theorem 3.3.3 Assume that (i) the actual and target topologies differ by only

one line, i.e., |Ē△E| = 1, and (ii) every line in Ē, incident5 from or to any target

bus with an injection meter, has at least one line flow meter on it. Then, among

all undetectable attacks, the state-preserving attack modifies the smallest number

of meters, which is the total number of line flow and injection meters located on

the target line and target buses.

Proof: See Section 3.7.

Another scenario that the state-preserving attack has the minimum cost is

when the adversary aims to delete lines from the actual topology.

Theorem 3.3.4 Let G∗ and Ḡ∗ denote the undirected versions of G and Ḡ respec-

tively. Suppose that the adversary aims to remove lines from G, i.e., Ē ( E, and

the following hold:

Every line in Ē, incident from or to a target bus with an injection meter, has

at least one line flow meter on it.

In G∗, target lines do not form a closed path.

Ḡ∗ does not include a tree T satisfying the following:

1) (number of nodes in T) ≥ 4, and

2) every node in T is a target bus with an injection meter.

5A line (i, j) is said to be incident from i and incident to j.
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Then, among all undetectable attacks, the state-preserving attack modifies the

smallest number of meters, which is the total number of line flow and injection

meters located on the target lines and target buses.

Proof: See Section 3.7.

Roughly speaking, the assumptions in Theorem 3.3.4 hold when target lines are

far from each other such that there is no big tree in Ḡ consisting solely of target

buses.

The main advantage of the state-preserving attack is that by preserving the

system state during the attack, the attack can be launched by perturbing only local

meters around the target lines; hence, only few data entries need to be modified.

Theorem 3.3.3 and Theorem 3.3.4 supports the claim by stating the optimality of

the state-preserving attack under the mild assumptions. The theorems also imply

that the minimum cost of an undetectable attack can be easily characterized if the

target topology satisfies the theorem assumptions.

Noisy Measurement Case

Following the intuition behind the state-preserving attack in the noiseless case, we

will construct its counterpart for the noisy measurement case. Recall the relation

(3.8):

(H̄ −H)x =
∑

(i,j)∈Ē\E

fij(x)m(i,j) −
∑

(i,j)∈E\Ē

fij(x)m(i,j).

The above implies that

(H̄ −H)x ∈M , span{m(i,j) : (i, j) ∈ Ē△E} (3.9)
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We set a(z) as a minimizer of the J(x̂)-test statistic6:

a(z) , argmin
d∈M
‖(z+ d)− H̄x̂WLS[z+ d]‖2Σ−1 (3.10)

where x̂WLS[z + d] denotes the WLS state estimate when the topology estimate

is Ḡ, and z + d is observed at the control center. Note that, since a(z) ∈ M, the

attack with a modifies at most the line flow measurements of the target lines and

the injection measurements of the target buses.

Now, suppose that the adversary modifies breaker state measurements such

that the topology estimate becomes Ḡ and simultaneously modifies the meter data

with a(z). Then, the J(x̂)-test statistic at the control center is upper bounded as

‖(z+ a(z))− H̄x̂WLS[z+ a(z)]‖2Σ−1

≤ ‖(H̄x+ e)− H̄x̂WLS[H̄x+ e]‖2Σ−1 ,

because (H̄−H)x is an element ofM. Note that the right hand side is the J(x̂)-test

statistic when the meter data are consistent with the topology estimate Ḡ. Hence,

it has χ2
m−n distribution, the same as the distribution of the J(x̂)-test statistic

under the absence of bad data [40]. This argument leads to the following theorem

stating that this attack is undetectable.

Theorem 3.3.5 The state-preserving attack a, defined in (3.10), is undetectable.

Note that x̂WLS[z + d] in (3.10) is a linear function of z + d, so a(z) can be

obtained as a linear weighted least squares solution. Specifically, a(z) has a form

of a(z) = Dz where D ∈ Rm×m depends on G, Ḡ, and Σ, but not on z. Hence, D

can be obtained off-line before observing z.

6We use ‖r‖2Σ−1 to denote the quadratic form r
tΣ−1

r.
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Note also that the state-preserving attacks in the noiseless and noisy cases

modify the same set of meters. In addition, recall that the condition for existence

of an undetectable attack is the same for both noiseless and noisy cases. The

optimality statements for the state-preserving attack in Theorem 3.3.3 and Theo-

rem 3.3.4 were derived purely based on the condition for undetectability. Hence,

the same optimality statements hold for the noisy measurement case, as stated in

the following corollary, and the same interpretation can be made.

Corollary 3.3.5.1 For the noisy measurement DC model, suppose that the con-

dition in Theorem 3.3.3 or the condition in Theorem 3.3.4 hold. Then, among all

undetectable attacks, the state-preserving attack modifies the smallest number of

meters, which is the total number of line flow and injection meters located on the

target lines and target buses.

3.4 Topology Attack with Local Information

In this section, we consider the more realistic scenario of a weak attacker who

does not have the measurement data of the entire network; it only has access

to a few meters. The information available to the adversary is local. We also

generalize the linear (DC) measurement model to the nonlinear (AC) model. The

resulting undetectable attacks, however, are limited to line removal attacks, i.e.,

the adversary only tries to remove lines from the actual network topology.

We first consider the noiseless measurement case under the DC model. Since we

are restricted to line-removal attacks, Ē is a strict subset of E. Therefore, recalling
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(3.8), we have

(H̄ −H)x = −
∑

(i,j)∈E\Ē

fij(x)m(i,j) (3.11)

where fij(x), as defined in Section 3.3, denotes the line flow from i to j when the

line is connected, and the state is x.

Let zij denote the measurement of the line flow from i to j. Due to the absence

of noise, zij = fij(x) = −fji(x) = −zji. With this observation and (3.11), we have

(H̄ −H)x = −
∑

(i,j)∈E\Ē

zijm(i,j) (3.12)

Therefore, setting a(z) = (H̄ −H)x, which is the state-preserving attack, is equiv-

alent to setting

a(z) = −
∑

(i,j)∈E\Ē

zijm(i,j) (3.13)

From (3.13), one can see that adding the above a(z) to z is equivalent to the

following heuristic described in Fig. 3.3:

1. For every target line (i, j), subtract zij and zji from the injection measure-

ments at i and j respectively.

2. For every target line (i, j), modify zij and zji to 0.

This heuristic simply forces the line flows through the target lines, which are

disconnected in Ḡ, to be zeros, while adjusting the injections at the target buses

to satisfy the power balance equations [51]. If a target line (i, j) has only one line

flow meter (e.g., zji), we can use −zji in the place of zij . But, if some target line

has no line flow meter, this heuristic is not applicable. Note that the heuristic

only requires the ability to observe and modify the line flow measurements of the

target lines and the injection measurements at the target buses. The adversary
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Figure 3.3: Heuristic Operations Around the Target Line (i, j)

can launch it without knowing the topology or network parameters (i.e., H and H̄

are not necessary). Since the heuristic is equivalent to the state-preserving attack,

it is undetectable.

The same heuristic is applicable to the noisy measurements z = Hx + e.

To avoid detection, the adversary can make a(z) approximate H̄x − Hx such

that z + a(z) is close to H̄x + e. Because zij = fij(x) + eij, zij is an unbi-

ased estimate of fij(x). Similarly, −∑(i,j)∈E\Ē zijm(i,j) is an unbiased estimate of

−∑(i,j)∈E\Ē fij(x)m(i,j), which is equal to H̄x−Hx. Hence, it is reasonable to set

a(z) = −∑(i,j)∈E\Ē zijm(i,j) even in the noisy measurement case.

The same idea is applicable to the AC power flow model with the nonlinear

state estimator. Suppose that z is the real power measurement from the AC power

flow model: z = h(x)+e, where x is the vector of the voltage phasors at all buses,

and h is the nonlinear measurement function for G. Let h̄ denote the measurement

function for Ḡ. If a(z) is equal to h̄(x)− h(x),

z̄ = (h(x) + e) + a(z) = h̄(x) + e, (3.14)

which is consistent with Ḡ, so the attack cannot be detected. We will show that

the attack vector of the heuristic approximates h̄(x)− h(x).

For simplicity, assume that the attacker aims at removing a single line (i, j)
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from G. Then, h(x) and h̄(x) are different only in the entries corresponding to the

injections at i and j and the line flows through (i, j). Specifically, h̄(x)− h(x) has

all zero entries except −hij(x) at the rows corresponding to the injection at i and

the line flow from i to j, and −hji(x) at the rows corresponding to the injection at j

and the line flow from j to i, where hij(x) denotes the entry of h(x) corresponding

to the line flow from i to j. Since zij = hij(x)+eij and zji = hji(x)+eji, zij and zji

can be considered as unbiased estimates of hij(x) and hji(x) respectively. Hence,

the attacker can use zij and zji to construct an unbiased estimate of h̄(x)− h(x).

Adding this estimate to z is equivalent to the heuristic operation of Fig. 3.3, which

subtracts zij and zji from zi and zj respectively, and sets zij and zji to zeros. The

same argument holds for the reactive measurement part and multiple-line removal

attacks. In practice, the heuristic attack should be executed twice separately,

once for real measurements and second for reactive measurements. In Section 3.6,

numerical simulations demonstrate that the heuristic attack on the AC power flow

model with the nonlinear state estimation has a very low detection probability.

3.5 Countermeasure for Topology Attacks

In this section, we consider countermeasures that prevent attacks by a strong ad-

versary with global information. In particular, we assume that a subset of meters

can be secured so that the adversary cannot modify data from these meters. In

practice, this can be accomplished by implementing more sophisticated authenti-

cation protocols. We present a so-called cover-up protection that identifies the set

of meters that need to be secured.

The algebraic condition in Theorems 3.3.1-3.3.2 provides a way to check
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whether a set of adversary-controlled meters is enough to launch an undetectable

attack. Restating the algebraic condition, there exists an undetectable attack with

the subspace A of feasible attack vectors, if and only if Col(H) ⊂ Col(H̄, A) for

some Ḡ (different from G).

Let IS denote the set of indices for the entries of z corresponding to the pro-

tected meters. Then, A is {c ∈ Rm : ci = 0, i ∈ IS}. The objective of the control

center is to make any undetectable attack infeasible while minimizing the cost of

protection (i.e., minimizing |IS| or equivalently, maximizing the dimension of A).

To achieve the protection goal, A should satisfy that for any target topology

Ḡ, Col(H) * Col(H̄, A). However, finding such A by checking the conditions for

all possible targets is computationally infeasible. To avoid computational burden,

the following theorem gives a simple graph-theoretical strategy.

Theorem 3.5.1 (Cover-up strategy) Let Ẽ and Ẽ0 denote the undirected coun-

terparts of E and E0 respectively. For i ∈ V, let Li denote the set of edges in (V, Ẽ0)

that are incident to i.

Suppose there is a spanning tree T = (V,ET) of (V, Ẽ) (the current topology)

and a vertex subset B (B ⊂ V) that satisfies

ET ∪ (∪b∈BLb) = Ẽ0. (3.15)

Then, if we protect (i) one line flow meter for each line in ET and (ii) the

injection meters at all buses in B, an undetectable attack does not exist for any

target topology.

Proof: See Section 3.7.
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The condition (3.15) means that the edges of T and the edges incident to vertices

in B can cover all the lines (both connected and disconnected) of the grid. One

can easily find such T and B using available graph algorithms.

Fig. 3.4 describes a cover-up strategy for IEEE 14-bus system. The strategy

used the spanning tree T marked by red dash lines, and B = {1, 4, 13}. The

unprotected meters and protected meters are marked by black rectangles and blue

circles respectively. In this example, the strategy requires protection of 30% of

meters. In addition, numerically checking the algebraic condition showed that if

the control center removes any of the protections, the grid becomes vulnerable to

undetectable topology attacks. This suggests that the strategy does not require

protection of an excessive number of meters. For IEEE 118-bus system, a cover-up

strategy required protection of 31% of meters.

The cover-up strategy also prevents undetectable state attacks [18]. It follows

from Theorem 1 in [24], which states that an undetectable state attack does not

exist if and only if the secure meters, protected by the control center, make the

system state observable. Because the strategy protects one line meter for each line

in the spanning tree T, the system state is always observable with the protected

meters [26].

3.6 Numerical Results

We first present practical uses of the algebraic condition for undetectable attacks.

Then, we test the proposed attacks with IEEE 14-bus and 118-bus systems, and

present their effect on real-time LMPs.
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Figure 3.4: Rectangles (or circles) on buses and lines represent injection meters
and line flow meters respectively. We assume that E = E0. The attacker may
attempt to remove lines from G.

3.6.1 Application of Undetectability Condition

In Section 3.3.1, the necessary and sufficient algebraic condition is given to check

whether an adversary can launch an undetectable attack for a target Ḡ with a

subspace A of feasible attack vectors. Here, we provide examples of how the

condition can be used by both attackers and the control center.

Suppose that an attacker with global information aims to remove a specific

set of lines from the topology. In Section 3.3.1, we have shown that the state-

preserving attack requires the smallest dimension of A among undetectable attacks
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Table 3.1: The adversary-controlled meters for the attacks to remove lines (2, 4)
and (12, 13): i → j denotes the meter for the line flow from bus i to bus j. i
denotes the injection meter at bus i.

Adversary-controlled meters

State-preserving

attack

2→ 4, 4→ 2, 12→ 13,

13→ 12, 2, 4, 12, 13

Alternative 1

(not modifying 12)

2→ 4, 4→ 2, 12→ 13, 13→ 12,

6→ 12, 12→ 6, 2, 4, 6, 13

Alternative 2

(not modifying 4)

2→ 4, 4→ 2, 12→ 13, 13→ 12, 2→ 3,

3→ 2, 3→ 4, 4→ 3, 2, 3, 12, 13

under mild conditions. If the conditions are met and the attacker can perform

the necessary meter modifications, the state-preserving attack can be launched

with the guaranteed optimality. However, if the attacker cannot perform some

meter modification required by the state-preserving attack, it should search for an

undetectable alternative with a reasonably small dimension for A. The algebraic

condition can be used to find such an alternative7. For instance, for a line-removal

attack on the IEEE 14-bus network in Fig. 3.4, Table 3.1 shows some alternatives

to the state-preserving attack when the attacker cannot modify some injection

meter.

When the set of adversary-controlled meters is fixed, the algebraic condition

can be exploited to find the target topologies, for which the attacker can launch

undetectable attacks. For instance, in the IEEE 14-bus network in Fig. 3.4, assume

that the attacker can modify the data from the injection meters at 11, 12, and

7One heuristic way to find an alternative, which we employed, is to begin with a large set K of
adversary-controlled meters that satisfies the algebraic condition and the constraint (e.g., exclude
a certain injection meter) and remove meters from K one by one such that after each removal of
a meter, K still satisfies the algebraic condition. If no more meter can be removed, we take K

as an alternative. The final set depends on the initial K and the sequence of removed elements.
One can try this procedure multiple times with different initial Ks and removal sequences, and
pick the one with the smallest size.
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Table 3.2: The Sets of Lines Undetectable Attacks Can Remove

|Ē△E| Ē△E (lines to be removed by the attack)

1
{(6, 12)}, {(6, 11)}, {(10, 11)}, {(9, 10)},

{(9, 14)}, {(13, 14)}, {(12, 13)}

2

{(10, 11), (13, 14)}, {(9, 14), (12, 13)}, {(9, 10), (13, 14)},
{(6, 12), (13, 14)}, {(6, 12), (10, 11)}, {(6, 12), (9, 10)},

{(6, 11), (12, 13)}, {(6, 11), (9, 14)}

3
{(6, 11), (9, 14), (12, 13)}, {(6, 12), (9, 10), (13, 14)},

{(6, 12), (10, 11), (13, 14)}

14, and all the line flow meters on (6, 12), (6, 11), (10, 11), (9, 10), (9, 14), and

(13, 14). Then, numerically checking the algebraic condition show that the attacker

cannot launch an undetectable attack for any target. However, if the attacker can

additionally control the line flow meters on (12, 13), it can launch an undetectable

attack to remove any set of lines listed in Table 3.2 from the current topology.

The control center can also utilize the algebraic condition to decide which me-

ters to put more security measures on. For instance, in the IEEE 14-bus network,

suppose that the control center protects all the injection meter. In the worst

case, the attacker may be able to modify all the line flow measurements. In this

case, checking the algebraic condition shows that the attacker can launch an un-

detectable line-removal attack for any target topology, as long as the system with

the target topology is observable. However, checking the algebraic condition also

shows that if the control center can additionally protect any line flow meter, an

undetectable attack does not exist for any target. Therefore, it is worthwhile for

the control center to make an effort to secure one more line flow meter.
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3.6.2 Undetectability and Effects on Real-time LMP

We tested the state-preserving attack with global information and the heuristic

with local information on IEEE 14-bus and IEEE 118-bus system, and investigated

their effect on real-time LMPs. The AC power flow model and nonlinear state

estimation were used to emulate the real-world power grid.

For simulations, we first assigned the line capacities, generation limits, and

estimated loads, and obtained the day-ahead dispatch. Then, we modeled the

voltage magnitudes and phases of buses as Gaussian random variables centered

at the system state for the day-ahead dispatch, with small variances. In each

Monte Carlo run, we generated a state vector from the distribution and used the

nonlinear AC power flow model8 with Gaussian measurement noise to generate

the noisy measurements. The attacker observed the noisy measurements, added

the corresponding attack vector to them, and passed the corrupt measurements

to the control center. The control center employed the nonlinear state estimator

to obtain the residue and performed the J(x̂)-test with the residue. If J(x̂)-test

failed to detect the attack, the real-time LMPs were calculated based on the state

estimate.

In simulations, we assumed that the attacker aims to remove a single line from

the topology. Fig. 3.5 presents the detection probability of the proposed attacks

on IEEE 14-bus system, for different target lines. The attacks on most target

lines succeeded with low detection probabilities, close to the false alarm constraint

0.1. Table 3.3 shows the detection probability averaged over all possible single-line

8In simulations, we have reactive measurements, which were not considered in our analysis of
the state-preserving attack. We simply applied the same analysis for the reactive components of
the linearlized decoupled model [51] and derived the reactive counterpart of the state-preserving
attack.
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Figure 3.5: The x-axis is for the index of the target line. Measurement noise
standard deviation is 0.5 p.u., and 1000 Monte Carlo runs are used.

Table 3.3: 1000 Monte Carlo runs are used.

14-bus 118-bus

false alarm const. α α = 0.1 α = 0.01 α = 0.1 α = 0.01

state-preserving 0.061 0.009 0.075 0.005

heuristic 0.105 0.019 0.095 0.009

removal attacks. In both IEEE 14-bus and 118-bus systems, the proposed attacks

were hardly detected. In most cases, detection probabilities were as low as the false

alarm rates. The performance of the heuristic was remarkably good, considering

that it only requires to observe and control few local data.

We also examined the absolute perturbation of the real-time LMPs (see [36]

for real-time LMP). The parameters in the real-time LMP calculation include the

estimated set of congested lines and the shift-factor matrix; both depend on the

topology estimate. Hence, we expect that topology attacks would disturb the real-

time LMP calculation. In our simulations, both the state-preserving attack and

the heuristic perturbed the real-time LMPs by 10% on average for IEEE 14-bus
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system and 3.3% for IEEE 118-bus system. In the 118-bus system, attacks on

some target lines had effects on only the buses near the target lines, so the average

perturbation was lower than the 14-bus case.

3.7 Proofs

3.7.1 Proof of Theorem 3.3.2

The if statement can be proved by constructing an undetectable attack following

the arguments used to prove Theorem 3.3.1 and Theorem 3.3.5. Due to the space

limit, we only provide the proof of the only if statement.

Let a be any attack with Col(H) * Col(H̄, U) where U , {u1, . . . , uK} denotes

the basis of A consisting of unit vectors in Rm and U ∈ Rm×K is the matrix having

the vectors in U as its columns. Without loss of generality, we assume that the

columns of H̄ and the unit vectors in U are linearly independent; if not, we can

just work with a smaller set of U satisfying the independence condition.

Because Col(H) * Col(H̄, U), Col(H)∩Col(H̄, U) is a subspace of Col(H) with

a strictly smaller dimension. Hence, S , {x ∈ Rn : Hx ∈ Col(H) ∩ Col(H̄, U)}

has the dimension less than n and thus a zero Lebesgue measure in Rn. Let x be

an arbitrary element of Rn \ S. Then, y , Hx /∈ Col(H̄, U). When x is the true

state, z = y + e, and the J(x̂)-test statistic for a is

J = ‖W (y + e+ a(y + e))‖Σ−1

where W = I − H̄(H̄ tΣ−1H̄)−1H̄ tΣ−1. Since a(z) ∈ Col(U) for all z, J is lower
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bounded by

L , min
(ak)

K
k=1

‖W (y + e+
K∑

k=1

akuk)‖Σ−1 .

The minimization in L is achieved by the linear WLS solution, and one

can show that L = (Ŵ (y + e))tΣ−1Ŵ (y + e) where Ŵ , W −

(WU)[(WU)tΣ−1(WU)]−1(WU)tΣ−1W . W and Ŵ are idempotent and Σ−1W

is symmetric. Using these properties, one may derive that

L = (Σ− 1
2 (y + e))tΣ

1
2 Ŵ tΣ− 1

2 (Σ− 1
2 (y + e)).

The above quadratic form has the following properties: (i) Σ
1
2 Ŵ tΣ− 1

2 is idempotent

and symmetric, (ii) Σ− 1
2 (y + e) ∼ N (Σ− 1

2y, Im), and (iii) rank(Σ
1
2 Ŵ tΣ− 1

2 ) =

m− n−K. With these three properties, Theorem B.33 and Theorem 1.3.3 in [75]

imply that L has the noncentral chi-squared distribution with the (m − n − K)

degree of freedom and the noncentral parameter λ , (Ŵy)tΣ−1(Ŵy).

It can be shown that y /∈ Col(H̄, U) implies Ŵy 6= 0. Hence, if the diagonal

entries of Σ (denoted by σ2
ii, 1 ≤ i ≤ m) uniformly decrease to 0, then λ =

∑m
i=1 σ

−2
ii (Ŵy)2i grows to infinity. Suppose that the J(x̂)-test uses a threshold τ .

The detection probability of the attack is Pr(J > τ), and it is lower bounded by

Pr(L > τ). And, Pr(L > τ) approaches 1 as the noncentral parameter λ grows

to infinity. Therefore, if the diagonal entries of Σ (i.e., noise variances) uniformly

decreases to 0, then λ grows to infinity and Pr(J > τ) approaches 1. Hence, the

only if statement and the additional statement are proved.

3.7.2 Proof of Theorem 3.3.3

Let Ē△E = {(a, b)}. We prove the statement for the case that the attack removes

(a, b), and there are two line flow meters on (a, b) (one for each direction) and
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injection meters at both a and b. For the line addition attack and other meter

availabilities, the similar argument can be made.

Suppose there exists an undetectable attack with A, and let U = {u1, . . . , uK}

denote the basis of A consisting of unit vectors in Rm. Theorem 3.3.1 implies

Col(H) ⊂ Col(H̄, A). It can be easily verified that m(a,b) ∈ Col(H̄, A), and this

implies m(a,b) = H̄x +
∑K

k=1 αkuk for some x ∈ Rn and (αk)
K
k=1 ∈ RK . Then,

m̄ , m(a,b) −
∑K

k=1 αkuk ∈ Col(H̄).

Let m̄ij (m̄i) denote the row entry of m̄ corresponding to the line flow from i to

j (the injection at i) and u(i,j) (u(i)) denote the m-dimensional unit vector with 1

at the row corresponding to the line flow from i to j (the injection at i). Physically,

m̄ ∈ Col(H̄) means that m̄ is a vector of meter data consistent with the topology

Ḡ. It implies that (i) m̄ab and m̄ba are zeros, since (a, b) is disconnected in Ḡ, and

(ii) the Kirchhoff’s current laws (KCL) should hold at bus a and b in Ḡ, i.e., the

sum of all outgoing line flows from a should be equal to the injection amount at

a. Using the special structure of m(a,b) and m̄, the following can be proved. From

(i), one can prove that u(a,b), u(b,a) ∈ U. From (ii), one can show that U should

include u(a) or some u(a,k) (or u(k,a)) with a and k connected in G. Similarly, U

should include u(b) or some u(b,l) (or u(l,b)) with b and l connected in G. Hence, |U|

is no less than the total number of meters located on the target line (a, b) and the

target buses a and b.

3.7.3 Proof of Theorem 3.3.4

Suppose a is an undetectable attack with A for the target topology Ḡ satisfying

the theorem conditions. Let U = {u1, . . . , uK} be the basis of A consisting of unit
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vectors in Rm, and J ⊂ V denote the set of target buses with injection meters.

For ease of presentation, we assume that each target line (i, j) has two line flow

meters, one for each direction. For other meter availabilities, the similar argument

can be made.

Theorem 3.3.1 implies that Col(H) ⊂ Col(H̄, U). It can be easily shown that if

the target lines do not form a closed path in G, then Col(H) ⊂ Col(H̄, U) implies

that m(i,j) ∈ Col(H̄, U) for all target lines (i, j) ∈ E \ Ē.

m(i,j) ∈ Col(H̄, U) means that it is possible to find a linear combination of

vectors in U,
∑K

k=1 αkuk, such that m̄(i,j) , m(i,j)+
∑K

k=1 αkuk ∈ Col(H̄). m̄(i,j) ∈

Col(H̄) implies that (i) the row entries of m̄(i,j) corresponding to the line flows of

the disconnected lines in Ḡ are zeros, and (ii) the entries of m̄(i,j) satisfy KCLs at

all buses in Ḡ.

For each (i, j) ∈ E \ Ē, since (i, j) is disconnected in Ḡ, m̄ij
(i,j) = m̄ji

(i,j) = 0. On

the other hand, mij
(i,j) = 1 and mji

(i,j) = −1. Hence, U should include u(i,j) and

u(j,i). Therefore, U should contain {u(i,j),u(j,i) : (i, j) ∈ E \ Ē}.

For each i ∈ J, the assumptions imply that each line adjacent to i in Ḡ has at

least one line flow meter. We let ni denote the set of the line flow meters on the

lines incident to i in Ḡ, and mni

(i,j) denote the vector of the corresponding entries in

m(i,j). Because m(i,j) has nonzero entries only for the injections at i and j and the

line flows through (i, j), mni

(i,j) has all zero entries. On the other hand, mi
(i,j) = 1.

Hence, for m̄(i,j) to satisfy the KCL at bus i in Ḡ, at least one of mi
(i,j) or entries

of mni

(i,j) has to be modified by
∑K

k=1 αkuk. Thus, U should contain u(i) or u(a,b)

for some (a, b) ∈ ni.

In case that u(i) /∈ U, for m̄(i,j) to satisfy the KCL at bus i in Ḡ, at least one
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entry of m̄ni

(i,j) should have a nonzero value: suppose m̄ik
(i,j) takes a nonzero value.

If k ∈ J, we can make a similar argument based on the KCL at k: U should contain

u(k) or u(a,b) for some (a, b) ∈ n(k)\{(i, k), (k, i)}. Following this line of argument,

we can derive that for each i ∈ J, U should contain unit vectors corresponding

to at least one of the following sets: (i) injection meter at i, (ii) line flow meters

on all the lines in some path (i, v2, . . . , vn) in Ḡ∗ and injection meter at vn where

v2, . . . , vn ∈ J, or (iii) line flow meters on all the lines in some path (i, v2, . . . , vn)

in Ḡ∗ where v2, . . . , vn−1 ∈ J and vn is either equal to one of {v2, . . . , vn−1} or not

in J. For each i ∈ J, U should contain at least one set of unit vectors corresponding

to any of the above three cases: we let Si to denote an arbitrary one of such sets.

Note that {u(i,j),u(j,i) : (i, j) ∈ E \ Ē} does not overlap with ∪i∈JSi. Hence,

|U| ≥ | ∪i∈J Si| + |{u(i,j),u(j,i) : (i, j) ∈ E \ Ē}|. Proving | ∪i∈J Si| ≥ |J| gives us

the theorem statement, because |J| + |{u(i,j),u(j,i) : (i, j) ∈ E \ Ē}| is the exact

number of meters the state-preserving attack modifies.

We will prove the following statement for all n ≤ |J|, by mathematical induc-

tion: for any subset J̄ ⊂ J with |J̄| = n, | ∪i∈J̄ Si| ≥ n. For n = 1, 2, 3, the

statement can be easily verified. Suppose the statement is true for all n ≤ k

(k ≥ 3), and J̄ is an arbitrary subset of J with |J̄| = k + 1. The tree con-

dition guarantees that J̄ can be partitioned into two nonempty sets J̄1 and J̄2

such that for any b1 ∈ J̄1 and b2 ∈ J̄2, every path in Ḡ∗ between b1 and b2 con-

tains a node not in J. This implies that ∪b∈J̄1Sb and ∪b∈J̄2Sb are disjoint. By

the induction hypothesis, we have | ∪b∈J̄1 Sb| ≥ |J̄1| and | ∪b∈J̄2 Sb| ≥ |J̄2|. Thus,

| ∪b∈J̄ Sb| = | ∪b∈J̄1 Sb| + | ∪b∈J̄2 Sb| ≥ |J̄1| + |J̄2| = |J̄|. Therefore, the induction

implies | ∪i∈J Si| ≥ |J|, and the theorem statement follows.
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3.7.4 Proof of Theorem 3.5.1

Suppose meters are protected as described with T and B. Let A be the resulting

subspace of feasible attack vectors and U , {u1, . . . , uK} denote the basis of A

consisting of unit vectors in Rm. Assume that an undetectable attack can be

launched for some target topology Ḡ (different from G). We will show that this

assumption leads to a contradiction.

Note that U cannot contain the unit vectors corresponding to the protected

measurements. In addition, Theorem 3.3.2 implies that Col(H) ⊂ Col(H̄, U).

These two imply that the lines in ET cannot be removed by the attack, because

each line has a protected line flow meter.

Let Ĥ ( ̂̄H) denote the submatrix of H (H̄) obtained by selecting the rows

corresponding to the protected meter measurements. One can easily verify that

Col(H) ⊂ Col(H̄, U) if and only if Col(Ĥ) ⊂ Col( ̂̄H). Hence, we have Col(Ĥ) ⊂

Col( ̂̄H). This means that for all x ∈ Rn, there exists y ∈ Rn such that ̂̄Hy = Ĥx.

Let HT denote the submatrix of Ĥ obtained by selecting the rows corresponding

to the protected line flow meters on the spanning tree T. Since the lines in ET

cannot be removed by the attack, the HT part of H remains the same in H̄; hence,

HT is also a submatrix of ̂̄H. Thus, ̂̄Hy = Ĥx implies HTy = HTx. Since T is

a spanning tree and it has one protected line flow meter per line, the protected

line meters on T makes the grid observable [26]. Hence, HT has full column rank.

Consequently, HTy = HTx implies y = x, and we have ̂̄Hx = Ĥx. This holds for

all x ∈ Rn.

Let a be any element in B. We will show that any line in La cannot be a

target line. Note that the injection meter at a is protected, so Ĥ and ̂̄H have
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the row corresponding to the injection at a. ̂̄Hx = Ĥx for all x ∈ Rn implies

that the injection at bus a should be the same for G and Ḡ as long as the state

is the same for the two cases. When the state is x, the injection at a in G is
∑

k:{a,k}∈Ẽ Bak(xa− xk), and the injection at a in Ḡ is
∑

l:{a,l}∈˜̄E
Bal(xa− xl). Thus

we have,
∑

k:{a,k}∈Ẽ

Bak(xa − xk) =
∑

l:{a,l}∈˜̄E

Bal(xa − xl), ∀x ∈ Rn,

which can be rewritten as follows: for all x ∈ Rn,

∑

k:{a,k}∈Ẽ\˜̄E

Bak(xa − xk)−
∑

l:{a,l}∈˜̄E\Ẽ

Bal(xa − xl) = 0.

If La ∩ (˜̄E△Ẽ) is not empty, the above statement is true only when Bak = 0

for all {a, k} ∈ La ∩ (˜̄E△Ẽ). Bak is the susceptance of the line {a, k} when it is

“connected”, and this value is nonzero in practice for every line. Hence, La∩(˜̄E△Ẽ)

should be empty; i.e., a line in La cannot be a target line.

It was shown that the lines in T and ∪a∈BLa cannot be a target line. Thus, the

condition (3.15) implies that no line can be a target line, and this contradicts the

assumption that there exists an undetectable topology attack.
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CHAPTER 4

DATA FRAMING ATTACK ON STATE ESTIMATION

4.1 Introduction

A promising feature of a future smart grid is the data-driven approach to auto-

mated monitoring, control, and decision. The paradigm shift to a data-driven

framework enables deeper integration of data collection and sophisticated data

processing. While extracting actionable information from real-time sensing data

can make the grid more efficient and adaptive to real-time operating conditions, it

exposes the grid to possible cyber data attacks aimed at disrupting grid operations

and potentially causes blackouts.

In [18], Liu, Ning, and Reiter presented perhaps the first man-in-the-middle

(MiM) attack on the power system state estimation where an adversary replaces

“normal” sensor data with “malicious data.” It was shown that, if the adversary

could gain control of a sufficient number of meters, it could perturb the state

estimate by an arbitrary amount without being detected by the bad data detector

employed at the control center. Such undetectable attacks are referred to as covert

data attacks.

The condition under which covert data attacks are possible is found to be

equivalent to that of system observability. In particular, covert attacks are possible

if and only if the system becomes unobservable when the meters under attack

are removed [24] (or equivalently, the adversary controls a critical set of meters.)

Therefore, the minimum number of meters that an adversary has to control in

order to launch a covert data attack, referred to as a security index, is an important
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measure of security against data attack. It represents a fundamental limit on the

capability of an adversary to disrupt covertly the operation of the grid [20, 24].

In this chapter, we show that the barrier on the capability of an adversary

can be circumvented by using a different form of attacks, one that exploits the

vulnerabilities of the existing bad data detection and removal mechanisms. In

particular, we show that the adversary only needs to gain control of about half of

the meters required by the security index while achieving the same objective of

perturbing the state estimate by an arbitrary amount without being detected by

the control center.

The attacks considered in this chapter are referred to as data framing attacks,

borrowing the notion of framing as providing false evidence to make someone

innocent appear to be guilty of misconducts. In the context of state estimation,

a data framing attack means that an adversary launches a data attack in such a

way that the control center detects the presence of bad data and identifies normal

meters as sources of bad data. To this end, the attacker does not try to make

malicious data pass the bad data detection (as a covert attack tries to do). Instead,

it purposely triggers the bad data detection and causes erroneous removal of good

data. Unknown to the control center, the remaining data still contain adversary-

injected malicious data, causing errors in the state estimate.

4.1.1 Summary of Results and Organization

We propose a data framing attack on power system state estimation. Specifi-

cally, we formulate the design of optimal data framing attack as a quadratically

constrained quadratic program (QCQP). To analyze the efficacy of the data fram-
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ing attack, we present a sufficient condition under which the framing attack can

achieve an arbitrary perturbation of the state estimate by controlling only half

of the critical set of meters. We demonstrate with the IEEE 14-bus and 118-bus

networks that the sufficient condition holds in critical sets associated with cuts.

The optimal design of framing attack is based on a linearized system. In prac-

tice, a nonlinear state estimator is often used. We demonstrate that, under the

nonlinear measurement model, the framing attacks designed based on linearized

system model successfully perturb the state estimate, and the adversary can con-

trol the degree of perturbation as desired.

The rest of the chapter is organized as follows. Section 4.2 introduces the

measurement and adversary models with preliminaries on state attacks. Section 4.3

presents the mathematical model of state estimation and bad data processing. In

Section 4.4, we present the main idea of the data framing attack and the QCQP

framework for the attack design. Section 4.5 provides a theoretical justification of

the efficacy of the data framing attack. In Section 4.6, we test the data framing

attack with the IEEE 14-bus and 118-bus networks.

4.2 Mathematical Models

This section introduces the topology and system state of a power network, the

meter measurement model, and the adversary model. In addition, the covert state

attack and its connection with network observability are explained. Throughout

the chapter, boldface lower case letters (e.g.,x) denote vectors, xi denotes the ith

entry of the vector x, boldface upper case letters (e.g.,H) denote matrices, Hij

denotes the (i, j) entry of H, R(H) denotes the column space of H, N(H) denotes
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the null space of H, and script letters (e.g., I,A) denote sets. The multivariate

normal distribution with the mean µ and the covariance matrix Σ is denoted by

N (µ,Σ).

4.2.1 Network and Measurement Models

A power network is a network of buses connected by transmission lines, and thus

the topology of the grid can be naturally defined as an undirected graph G = (V,E)

where V is the set of buses, and E is the set of lines connecting buses ({i, j} ∈ E if

and only if bus i and bus j are connected.) The system state of the power network

is defined as the vector of bus voltage magnitudes and phase angles, from which

all the other quantities (e.g., power line flows, power injections, line currents) can

be calculated.

For real-time estimation of the system state, the control center collects mea-

surements from line flow and bus injection meters1 deployed throughout the grid.

The meter measurements are related to the system state x in a nonlinear fashion,

and the relation is described by the AC model [51]:

z = h(x) + e, (4.1)

where h(·) is the nonlinear measurement function, and e is the Gaussian measure-

ment noise with a diagonal covariance matrix.

If some of the meters malfunction or an adversary injects malicious data, the

control center observes biased measurements,

z̄ = h(x) + e+ a, (4.2)

1Other types of meters can also be considered, but we restrict our attention to line flow and
bus injection meters for simplicity.
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where a represents a deterministic bias. In such a case, the data are said to be

bad, and the biased meter entries are referred to as bad data entries. Note that

even when a meter is protected from adversarial modification, it may still have a

bias due to a physical malfunction or improper parameter setting; filtering out the

measurements from such malfunctioning meters was the original objective of the

legacy bad data processing and is adopted in practice today [40].

Even though the model in (4.1) is nonlinear, the state estimate is generally

obtained by iterations of weighted linear least squares estimation with the locally

linearized model [51]. Therefore, it is reasonable to analyze the performance of

state estimation using the locally linearized model around the system operating

point. To this end, in analyzing the attack effect on state estimation, we adopt the

so-called DC model [51]. In the DC model, for the ease of analysis, the AC model

(4.1) is linearized around the system state where all voltage phasors are equal to

1∠0, and only real part of the measurements are retained:

z = Hx+ e, (4.3)

where z ∈ Rm is the measurement vector consisting of real part of line flow and bus

injection measurements, the system state x ∈ Rn is the vector of voltage phase

angles at all buses except the reference bus (x is unknown, but deterministic),

H ∈ Rm×n is the DC measurement matrix that relates the system state to bus

injection and line flow amounts, and e is the Gaussian measurement noise with

a diagonal covariance matrix Σ. We represent the noise covariance matrix Σ

as Σ = σ2Σ̄, where Σ̄ is a diagonal matrix representing the variation of noise

variances across different meters (
∑m

i=1 Σ̄ii = 1), and σ2 is a scaling factor.

Each row of H has a special structure depending on the type of the meter [51].

For ease of presentation, consider the noiseless measurement z = Hx. If an entry
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zk of z is the measurement of the line flow from bus i to bus j, zk is Bij(xi − xj)

where Bij is the line susceptance and xi is the voltage phase angle at bus i [51].

If zk is the measurement of bus injection at i, it is the sum of all the outgoing

line flows from i, and the corresponding row of H is the sum of the row vectors

corresponding to all the outgoing line flows.

The analysis based on the DC model needs to be verified using the realistic

AC model simulations; we demonstrate in Section 4.6 that the proposed attack

strategy is also effective in the AC model simulations.

4.2.2 Adversary Model

We consider a man-in-the-middle attack on power system state estimation. As

described in Fig. 4.1, an adversary is assumed to be capable of modifying the data

from a subset of analog meters IA. We refer to the meters in IA as adversary

meters.

The control center observes the corrupted measurements z̄ instead of the orig-

inal measurements z in (4.1). We assume that the adversary knows the line pa-

rameters (i.e., the measurement function h and the measurement matrix H).

The adversarial modification is mathematically modeled as follows:

z̄ = z+ a, a ∈ A, (4.4)

where a is an attack vector, and A is the set of feasible attack vectors defined as

A , {c ∈ Rm : ci = 0, ∀i /∈ Ia}. Note that A fully characterizes the ability of the

adversary. In addition, the adversary is assumed to design a without observing

any entry of z, i.e., the attack does not require any real-time observation.

99

114



4.2.3 Network Observability and Covert State Attack

For state estimation to be feasible, the control center needs to have enough meter

measurements, from which the system state can be uniquely determined. Formally,

a power network is said to be locally observable at a state x0 if the system state

can be uniquely determined from the noiseless meter measurements h(x) in a

neighborhood of x0. This implies that the Jacobian of h at x0 has full rank.

However, due to the intractability of checking local observability for all feasible

operating points, the DC model (4.3) is generally adopted for observability analysis

[26]: the network is said to be observable if the DC measurement matrix H has

full rank. In practice, power networks should be designed to satisfy observability.

Hence, we assume that the network of our interest is observable (i.e., H has full

rank.)

The concept of network observability is closely related to the feasibility of a

covert state attack. The covert state attack was proposed in [18] under the DC

model: if there exists y ∈ Rn \ {0} such that Hy ∈ A, then setting a equal to Hy

results in

z̄ = Hx+ e+ a = H(x+ y) + e, (4.5)

and thus, z̄ cannot be distinguished from a normal noisy measurement vector with

the state x+ y. Furthermore, by properly scaling the attack vector (e.g., αa), the

adversary can perturb the state estimate by an arbitrary degree (e.g., αy).

It is shown in [24] that a covert attack is feasible if and only if the adversary

can control a critical set of meters, which is defined as a set of meters such that re-

moving the set from the network renders the network unobservable while removing

any proper subset of it does not [51]. Hence, the feasibility condition means that

removing the adversary meters renders the measurement matrix rank deficient.
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Figure 4.1: Adversary model with state estimation and bad data test

The intuition behind the condition is that, for any y ∈ Rn \{0}, Hy is in A if and

only if Hy has zero entries for all non-adversary meters; the latter implies that the

measurement matrix after the removal of the rows corresponding to the adversary

meters is rank deficient, because y is in its null space.

4.3 State Estimation and Bad Data Processing

This section introduces a popular approach of state estimation and bad data pro-

cessing, which we assume to be employed by the control center. Once the control

center receives the measurements z, it aims to obtain the estimate x̂ of the system

state x. Because bad data entries in z may result in a bias in the state estimate,

the control center iteratively conducts state estimation and bad data detection and

identification to filter out possible bad data entries in z.

Fig. 4.1 illustrates an iterative scheme for obtaining x̂, which consists of three

function blocks: State Estimation, Bad Data Detection, and Bad Data Identifi-

cation [40, 51]. The iteration begins with the initial measurement vector z(1) , z

and the initial measurement function h(1) , h where the superscript denotes the

index for the current iteration. In each iteration, (i) the state estimate is obtained

(State Estimation), (ii) presence of bad data is tested (Bad Data Detection), and
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Table 4.1: State estimation and bad data processing
Bad-Data-Processing(z, h,Σ)

1: z
(1) ← z; h(1) ← h; k ← 1;

2: while (true)

3: (x̂(k), r(k))← State-Estimation(z(k), h(k));

4: result← Bad-Data-Detection(r(k));

5: if result == good

6: break;

7: else

8: (z(k+1), h(k+1))← Bad-Data-ID(r(k), z(k), h(k));

9: end

10: k ← k + 1;

11: end

12: return x̂
(k);

(iii) if data are declared to be bad, one data entry is identified as bad and removed

from the measurement vector (Bad Data Identification). Table 4.1 provides the

pseudocode for the overall procedure. In the following subsections, the detailed

operation of each function block will be presented.

4.3.1 State Estimation and Bad Data Detection

In the kth iteration, State Estimation uses (z(k), h(k)) as an input, and obtains the

weighted least squares (WLS) estimate of the system state:

x̂(k) , argmin
x

(z(k) − h(k)(x))T (Σ(k))−1(z(k) − h(k)(x)), (4.6)

where Σ(k) is the covariance matrix of the corresponding noise vector. Based on

the state estimate, the residue vector is also evaluated:

r(k) , z(k) − h(k)(x̂(k)). (4.7)

102

117



We assume that the J(x̂)-test [40,51] is employed for bad data detection: Bad

Data Detection makes a decision based on the sum of weighted squared residues:





bad data if (r(k))T (Σ(k))−1r(k) > τ (k);

good data if (r(k))T (Σ(k))−1r(k) ≤ τ (k).
(4.8)

The J(x̂)-test is widely used due to its low complexity and the fact that the test

statistic has a χ2 distribution if the data are good [40]. The latter fact is used to

set the threshold τ (k) for a given false alarm constraint.

4.3.2 Iterative Bad Data Identification and Removal

If Bad Data Detection (4.8) declares that the data are good, the algorithm returns

the state estimate x̂(k) and terminates. However, if Bad Data Detection declares

that the data are bad, Bad Data Identification is invoked to identify and remove

one bad data entry from the measurement vector.

A widely used criterion for identifying a bad data entry is the normalized

residue [40, 51], which is considered one of the most reliable criteria [41]. In the

normalized residue analysis, each r
(k)
i is divided by its standard deviation under the

good data hypothesis (i.e., the standard deviation of r
(k)
i when there exists no bad

data entry in z(k).) If there exists no bad data entry in z(k), and the state estimate

x̂(k) is close to the actual state x, the distribution of r(k) can be approximated by

N (0,W(k)Σ(k)) where

W(k) , I−H(k)((H(k))T (Σ(k))−1(H(k)))−1(H(k))
T
(Σ(k))−1 (4.9)

with H(k) denoting the Jacobian of h(k) at x̂(k) and I denoting the identity ma-

trix with the appropriate size (see Appendix of [40] for the detail.) Hence, the
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normalized residue is calculated as

r̃(k) = Ω(k)r(k), (4.10)

where Ω(k) is a diagonal matrix with

Ω
(k)
ii =





0 if {i} is a critical set2,

1√
(W(k)Σ(k))ii

otherwise.
(4.11)

Once the normalized residue r̃(k) is calculated, the meter with the largest |r̃(k)i |

is identified as a bad meter. Bad Data Identification removes the row of z(k)

and the row of h(k) that correspond to the bad meter and returns the updated

measurement vector and measurement function for the next iteration, denoted by

z(k+1) and h(k+1).

Under the DC model (4.3), State Estimation, Bad Data Detection, and Bad

Data Identification are the same with that in the AC model, except that the

nonlinear measurement function h(k)(x) is replaced with the linear function H(k)x

(so, the Jacobian is the same everywhere.) Note that the WLS state estimate (4.6)

is replaced with a simple linear WLS solution:

x̂(k) = ((H(k))T (Σ(k))−1(H(k)))−1(H(k))
T
(Σ(k))−1z(k), (4.12)

and thus

r(k) = z(k) −H(k)x̂(k) = W(k)z(k). (4.13)

2If {i} is a critical set (i.e., removing the meter i makes the grid unobservable), its residue is
always equal to zero [51], and the corresponding diagonal entry of W(k)

Σ
(k) is zero. For such a

meter, the normalizing factor is 0 such that its normalized residue is equal to 0.
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4.4 Data Framing Attack

This section presents a new attack strategy on state estimation, referred to as

data framing attack, which exploits the bad data processing to remove data from

some normally operating meters and make the adversary meters appear to be

trustworthy. We present the main idea and the QCQP framework for the optimal

design of the attack.

We focus our attention to the case where the adversary cannot control enough

meters to launch a covert attack. The set of normal meters that the framing

attack aims to remove (i.e., frame as bad meters) is referred to as the target set,

denoted by IT. The target set IT is chosen such that after the target meters are

removed from the grid, a covert attack becomes feasible. For instance, suppose

that I is a critical set. The feasibility condition of the covert attack, explained in

Section 4.2.3, implies that if I \ IA is removed from the grid, then the adversary

with IA can launch a covert state attack, because further removing all the meters

in IA makes the grid unobservable. Therefore, I \ IA can be set as the target set

IT.

The resulting state perturbation by the framing attack does depend on the

choice of the target set. Finding the optimal target set for a given attack objective

is certainly an important problem. However, it is out of scope of this chapter. We

focus on the design of the attack vector for a fixed target set.
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4.4.1 Effect of Attack on Normalized Residues

To analyze how the attack affects the bad data processing, we analyze, under the

DC model (4.3), the adversarial effect on the normalized residue vector in the first

iteration. In this subsection, we omit the superscript to simplify notation: all

the quantities we consider are associated with the first iteration unless otherwise

specified.

Suppose that z is the measurement vector without bad data under the DC

model (4.3). The normalized residue in the first iteration is obtained as

r̃ = Ωr = ΩWz, (4.14)

where Ω = Ω(1) is defined as in (4.11).

Due to the normalization, each entry r̃i is distributed as N (0, 1) unless {i} is

a critical set [51]; if {i} is a critical set, the normalized residue for the meter i is

always equal to zero for any z.

If an attack vector a is added, the resulting normalized residue is

r̃ = ΩW(z+ a) = ΩWz+ΩWa. (4.15)

Thus, if {i} is not a critical set, r̃i is distributed as N ((ΩWa)i, 1); if {i} is critical,

r̃i = (ΩWa)i surely.

Recalling that the absolute normalized residues (i.e., |r̃i|) are the statistics used

for identifying the bad data entries, one intuitive heuristic to get the target meters

removed is to make the mean energy of the normalized residues at the target meters

as large as possible. Making the target meters have large normalized residues in

the first iteration is of course not a guarantee of their removal in the following
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iterations. Nevertheless, this is a reasonable heuristic to avoid the difficult task of

analyzing the dynamic adversarial effect in subsequent iterations. Note that

E


∑

i∈IT

(r̃i)
2


 =

∑

i∈IT

E[(r̃i)
2] =

∑

i∈IT

(ΩWa)2i + C, (4.16)

where C is the number of the meters in IT that do not form a single-element critical

set. Therefore, maximizing the mean energy of the normalized target residues is

equivalent to maximizing
∑

i∈IT
(ΩWa)2i = ‖STΩWa‖22 where ST ∈ R|IT|×m is

the row-selection matrix which retains only the rows corresponding to the target

meters.

4.4.2 Optimal Framing Attack via QCQP

The ultimate objective of the framing attack is to gain an ability to perturb the

state estimate by an arbitrary degree. To this end, the framing attack aims to

accomplish two tasks.

The first is to make the bad data processing remove the target meters such

that the network with the remaining meters becomes vulnerable to a covert state

attack by the adversary. As discussed in Section 4.4.1, we attempt to achieve this

goal by maximizing the mean energy of the normalized target residues, which is

equivalent to maximizing ‖STΩWa‖22.

The second task is to ensure that the attack becomes covert after the target

meters are removed, thereby making arbitrary state perturbation possible. Let

H0 denote the m × n measurement matrix obtained from H by replacing the

rows corresponding to the target meters with zero row vectors. Then, the attack

becomes covert (i.e., the attack vector lies in the column space of the measurement
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matrix) after the target meters are removed, if and ony if a is in R(H0). Therefore,

we restrict the attack vector a to be not only in the feasible set A but also in R(H0).

Based on the aforementioned intuition, we solve the following optimization to

find the optimal direction to align the attack vector:

maxa ‖STΩWa‖22
subj. ‖a‖22 = 1, a ∈ R(H0) ∩A.

(4.17)

The optimization (4.17) gives the optimal direction a∗ of the attack vector to

maximize the mean energy of the normalized target residues, among the feasible

directions that render the attack covert after the target meters are removed.

To provide a more intuitive description of the feasible set in (4.17), we in-

troduce the (m − |IA| − |IT|) × n matrix H̄ obtained from H by removing the

rows corresponding to the adversary and target meters. It can be easily seen that

a ∈ R(H0)∩A if and only if a = H0x0 for some x0 ∈ N(H̄). Therefore, the dimen-

sion of R(H0) ∩A is equal to the dimension of N(H̄). For instance, if IA ∪ IT is a

critical set, H̄ has rank n− 1, and its null space has dimension one. Therefore, in

this case, R(H0)∩A is a one-dimensional space, and there is no need to search for

the optimal direction. On the other hand, if IA ∪ IT contains more than one crit-

ical sets, the dimension of N(H̄) is greater than one, and the optimization (4.17)

searches for the optimal direction among the infinite set of feasible directions.

Finally, we set an attack vector a as ηa∗ where η ∈ R is a parameter that

adjusts the direction (i.e., positive or negative depending on the sign of η) and

the magnitude of the resulting state perturbation. It is important to point out

that a sufficiently large |η| is necessary for successful removal of the target meters.

Because, the mean of the J(x̂)-test statistic (of Bad Data Detection) increases

linearly with respect to |η|2 [40], and we want the test statistic to be larger than the
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threshold in multiple iterations such that Bad Data Identification can be invoked

enough times to remove all the target meters.

In practice, real-world power meters have very high signal-to-noise ratios

(SNRs) [76], which means that even a small attack vector can be detected by

the J(x̂)-test. Therefore, the necessary size of |η| to invoke Bad Data Identifi-

cation in multiple iterations is expected to be reasonably small. The numerical

examples in Section 4.6 demonstrate that the framing attack that perturbs the

measurement vector by less than 1% in L1-norm can succeed under a moderately

high SNR setting.

The optimization (4.17) can be written as a QCQP:

minq qTPq

subj. qTQq− 1 = 0, q ∈ Rp,
(4.18)

where

P , −(STΩWB)T (STΩWB), Q , BTB, (4.19)

and B ∈ Rm×p is the basis matrix of the p-dimensional vector space R(H0) ∩ A.

Note that the dimension p is nonzero because the target meters are set such that

a covert attack becomes feasible after their removal. In addition, P is negative

semidefinite, and Q is positive definite since B has full column rank. The posi-

tive definiteness of Q implies that a solution exists (i.e., the objective function is

bounded below.)

The KKT conditions for (4.18) are as follows:

Pq+ λ(Qq) = 0, qTQq− 1 = 0, (4.20)

where λ is the Lagrange multiplier for the equality constraint. The optimal solution

q∗ of (4.18) is the one that results in the minimum objective function value among
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all (λ,q) pairs satisfying the KKT conditions (4.20).

The KKT conditions (4.20) imply that

Q−1Pq = λq;

qTPq = qT (−λQq) = −λqTQq = −λ.
(4.21)

For any solution (λ,q) of (4.20), the first equation means that λ should be an

eigenvalue of Q−1P, and q should be in the corresponding eigenspace. The second

equation means that the objective function value at q is equal to −λ. Therefore,

we can find an optimal solution q∗ of (4.18) as follows: (i) find the maximum

eigenvalue of Q−1P, and (ii) find an eigenvector q∗ in the corresponding eigenspace

that satisfies (q∗)TQq∗ − 1 = 0. Once q∗ is found, an optimal solution a∗ of the

original problem (4.17) is constructed as a∗ = Bq∗.

4.5 Factor-of-Two Result

In this section, we demonstrate that the framing attack enables the adversary

controlling only a half of a critical set of meters to perturb the state estimate by

an arbitrary degree. Specifically, given a partition {I1, I2} of a critical set of meters,

we present a sufficient condition under which the adversary can control one of I1

or I2 to perturb the state estimate by an arbitrary degree. We provide numerical

evidences from IEEE benchmark networks that for the critical sets associated with

cuts, we can find a partition with |I1| ≃ |I2| satisfying the sufficient condition.
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4.5.1 Estimation of Adversarial State Estimate Perturba-

tion

The exact analysis of how the framing attack would perturb the state estimate at

the end of the iterative bad data processing is a difficult task. However, assuming

that the meter SNRs are high, we can estimate the effect of the framing attack as

follows. Since SNRs of most practical meters tend to be higher than 46 dB [76],

the high meter SNR assumption is reasonable.

Suppose that the attacker adds the attack vector a to z, and the bad data test

is executed on z̄. The measurement vector in the kth iteration is

z̄(k) = H(k)x+ a(k) + e(k), (4.22)

where H(k), a(k) and e(k) are obtained from H, a and e by removing the (k − 1)

rows corresponding to the meters identified as bad until the (k − 1)st iteration.

The state estimate x̂(k) is

[(H(k))T (Σ(k))−1H(k)]−1(H(k))T (Σ(k))−1z̄(k)

= x+ [(H(k))T (Σ(k))−1H(k)]−1(H(k))T (Σ(k))−1(a(k) + e(k)).
(4.23)

Hence, the state estimate perturbation after the kth iteration is

x̂(k) − x = [(H(k))T (Σ(k))−1H(k)]−1(H(k))T (Σ(k))−1(a(k) + e(k)). (4.24)

In addition, the residue vector is

r(k) = W(k)z̄(k) = W(k)(H(k)x+ a(k) + e(k))

= W(k)(a(k) + e(k)).
(4.25)

From (4.24) and (4.25), we can see that both the state estimate perturbation and

the residue vector do not depend on the actual state x. Considering that bad
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data detection and identification at each iteration exclusively rely on the residue

vector, the observation from (4.24) and (4.25) implies that if we are interested in

analyzing how much the attack perturbs the final state estimate, i.e., x̂(N) − x,

where N denotes the total number of iterations, we can simply work with a+e by

assuming that x is equal to 0.

Furthermore, if the meter SNRs are significantly large (i.e., σ2 ≪ 1), we can

estimate the resulting state perturbation by running the noiseless version of the

bad data processing on the attack vector a and checking the resulting x̂(N). The

noiseless version means the algorithm which the bad data processing converges to

as σ2 decays to 0. Specifically, Σ is replaced3 by Σ̄, and in the kth iteration, the

detector declares presence of bad data if and only if (r(k))T (Σ̄(k))−1r(k) > 0 (i.e.,

the data are declared to be good if and only if the state estimation results in a

zero residue vector.)

4.5.2 Factor-of-Two Theorem for Critical Sets

Suppose that {I1, I2} is a partition of a critical set, and let H̄ denote the measure-

ment matrix after removing the meters in I1 ∪ I2 from the grid. Since I1 ∪ I2 is

a critical set, H̄ has rank n − 1, and the dimension of its null space is one. Let

∆x denote a unit basis vector of the null space of H̄. Recalling the discussion in

Section 4.4.2, if I1 is the set of adversary meters, and I2 is the target set, then the

framing attack aligns the attack vector along H1∆x, where H1 is the m×n matrix

obtained from H by replacing the rows corresponding to the meters in I2 with zero

3Note that State Estimation and Bad Data Identification are not affected by the value of σ2.
Because, σ2 gets cancelled out in the state estimate expression (4.12), and Bad Data Identification
depends on the relative magnitudes of each residue with respect to other residues, which are not
affected by the value of σ2. Only Bad Data Detection is affected by the decaying σ2.
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row vectors (H2 is defined in the same way by replacing the rows corresponding

to I1.)

The following theorem provides a sufficient condition that guarantees that the

framing attack can use one of I1 and I2 to perturb the state estimate by an arbitrary

degree under the high SNR setting. The condition is based on the result of running

the deterministic test described in Section 4.5.1.

Theorem 4.5.1 Suppose that if we run the noiseless version of the state estima-

tion and the bad data processing on H1∆x, then there exists a unique state y ∈ Rn

such that the final state estimate is always equal to y (i.e., x̂(N) = y) regardless

of whatever decisions are made under tie4 situations in Bad Data Identification.

Under this condition, the following hold for any true state x ∈ Rn:

(1) Suppose y 6= 0. If the framing attack using I1 as adversary meters and I2

as target meters (i.e., a = ηH1∆x where η ∈ R is a scaling factor) is launched,

then

lim
σ2→0

Pr(z̄(N) = H(N)(x+ ηy) + e(N)) = 1, (4.26)

where N is the random variable representing the total number of iterations in the

bad data processing.

(2) Suppose y 6= ∆x. If the framing attack using I2 as adversary meters and

I1 as target meters (i.e., a = ηH2∆x) is launched, then

lim
σ2→0

Pr(z̄(N) = H(N)(x+ η(∆x− y)) + e(N)) = 1. (4.27)

4It is possible that a tie may occur in Bad Data Identification at some iteration: i.e., the
largest absolute normalized residue is assumed by more than one meter. In a tie situation,
we assume that Bad Data Identification chooses an arbitrary meter with the largest absolute
normalized residue.
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Proof: See Section 4.7

The event {z̄(N) = H(N)(x + ηy) + e(N)} means that the final measurement

vector at the end of the bad data processing is a noisy measurement vector with

the state perturbed by ηy. Theorem 4.5.1 implies that if the condition is met,

then at least one of I1 and I2 can be used by the framing attack to perturb the

state estimate by an arbitrary degree, because y cannot be simultaneously 0 and

∆x. Especially, if the condition holds for the partition with |I1| = |I2|, then the

adversary controlling only a half of the critical set can perturb the state estimate

by an arbitrary degree.

One important question is whether a partition {I1, I2} with |I1| ≃ |I2| that

satisfies the condition of Theorem 4.5.1 can be found in general. To answer this

question, we investigated critical sets associated with cuts5 in the IEEE 14-bus

and 118-bus networks, where every bus has an injection meter and every line has

line meters for both directions. The spanning tree observability criterion in [26]

implies that the set I of the meters associated with a cut (i.e., the set of the line

meters on the cut-set lines and the injection meters on the both ends of the cut-set

lines) forms a critical set if removing the cutset decomposes the topology into two

connected graphs. For instance, the cut in Fig. 4.2 disconnects the bus 3 from the

rest of the network, and {{2, 3}, {3, 4}} is the associated cut-set. The set of circled

red meters is the critical set associated with the cut.

We executed 20,000 runs of the random contraction algorithm by Karger and

Stein [77]—a randomized algorithm for finding a cut—and found 118 cuts in the

14-bus network and 290 cuts in the 118-bus network. For each cut, we built a

5A cut of an undirected graph (V,E) is defined as a partition {V1,V2} of V consisting of two
nonempty subsets, and the associated cut-set is the subset of lines connecting two vertices in
different partitions.
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Figure 4.2: IEEE 14-bus network: the rectangles on lines and buses represent
line flow meters and bus injection meters respectively. The line meter on the line
{i, j}, that is closer to i, measures the power flow from i to j. The red dashed line
describes a cut, and the circled meters are the meters associated with the cut.

partition {I1, I2} of the critical set I associated with the cut such that |I1| ≃ |I|
2
: I1

consists of only the line meters (both directions) associated with a subset of lines in

the cut-set such that
∣∣∣|I1| − |I|

2

∣∣∣ ≤ 1, and I2 is set to be I\I1. In both networks, for

every cut we considered, the partition constructed in the aforementioned manner

satisfied the condition of Theorem 4.5.1; this suggests that the sufficient condition

is not stringent, at least for critical sets associated with cuts6.

6The average size of the critical sets we considered is 15.7 for the 14-bus case and 12.7 for the
118-bus case.
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4.6 Numerical Results

We tested the performance of the framing attack with the IEEE 14-bus and 118-

bus networks under both the DC and AC models. The AC simulation results

demonstrate the efficacy of the framing attack under the real-world power system

setting. Because the ultimate goal of the attack is to perturb the state estimate,

we measure the mean L2-norm of the resulting state estimate error:

E[‖x̂− x‖2],

where x̂ is the state estimate, and x is the true state.

4.6.1 Simulation Setting

In the IEEE 14-bus and 118-bus networks, we chose representative attack scenar-

ios (i.e., adversary meters and target meters) and tested the performance of the

framing attack. For each case, we ran Monte Carlo simulations to evaluate the

mean state estimate perturbation. In each Monte Carlo run, the true state x was

generated by a multivariate Gaussian distribution with small variances. Its mean

was set as the operating state given by the IEEE 14-bus and 118-bus data [78].

Based on the generated state x, the noisy measurements were generated by the

measurement model (i.e., h(x) + e). The attack vector was constructed based on

the DC measurement matrix H as described in Section 4.4. Once constructed, the

atack vector was added to the noisy measurements, and state estimation and bad

data processing7 were executed on the corrupted measurements. After the bad

data processing finished, we measured ‖x̂(N) − x‖2.
7The false alarm rate of the bad data detector is set to be 0.04 throughout all the simulations.
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The main difference between the DC and AC simulations is that we used differ-

ent measurement models for data generation. Note that the design of the framing

attack was studied for the DC model which has only the real part of the mea-

surements. For the AC simulations, we designed the attack vector based on the

DC model, and the attack modified only the corresponding real part of the mea-

surements. Considering the linear decoupled model (see Chapter 2.7 in [51]), such

addition of the attack vector is expected to modify primarily the bus voltage phase

angles and have little effect on the bus voltage magnitudes. Hence, in interpreting

the AC results, we focus on the perturbation in the phase-angle part of the state

estimate.

For comparison, we also executed the conservative scheme in [24], which aims

to perturb the state estimate by the maximum degree while not raising any alarm

in the bad data processing. This scheme has been considered as the best the

adversary incapable of a covert state attack can do. In the conservative scheme,

the attack vector was designed as a solution to

maxa∈A ‖(HTΣ−1H)−1HTΣ−1a‖22
subj. rTΣ−1r ≤ τ,

(4.28)

where the constraint guarantees that the alarm is not raised at all, and the objective

function is the resulting perturbation of the state estimate due to the attack vector.

4.6.2 Simulation Results with 14-Bus Network

We first tested the case where the adversary can control only a half of a critical set.

Specifically, we considered the adversary who can control (2, 3), (3, 4), and (4, 3):

(i, j) denotes the line meter for the power flow from i to j, and (i) denotes the
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injection meter at bus i. The target meters were set to be (3, 2), (2), (3), and (4)

such that the set of adversary meters and target meters is the critical set associated

with the cut in Fig. 4.2. We tested the framing attack with three different attack

magnitudes: ‖a‖1 is 1%, 2%, or 3% of ‖z‖1.

Fig. 4.3 shows the resulting state estimate perturbations versus the meter SNR

in the DC simulations. The meter SNR ranges from 26 dB to 46 dB (equivalently,

the noise-to-signal amplitude ratio ranges from 5% to 0.5%.) Note that the SNR

range we tested is no greater than the SNR of most practical meters deployed

in real-world power networks [76]. The normal state estimate error and the state

estimate error under the conservative scheme are very close, and both decay to zero

as the SNR increases. However, the state estimate error under the framing attack

converges to a constant, which is proportional to the attack magnitude, as the SNR

increases. The result implies that the framing attack can adjust the state estimate

perturbation by choosing a proper attack magnitude. The effect of the framing

attack becomes distinct from the normal state estimate error when the SNR is

high. To demonstrate the relative effect of the framing attack with respect to the

normal error, Fig. 4.4 shows the resulting state estimate perturbation normalized

with respect to the state estimate error under the non-attack scenario. Under

the same attack setting, Fig. 4.5 shows the state estimate perturbation versus the

meter SNR in the AC simulations. It can be observed that, especially in the high

SNR region, the perturbation amount is proportional to the attack magnitude.

The plots imply that the effect of the framing attack persists in the AC model,

thereby suggesting that the framing attack can be detrimental to the real-world

power system state estimation.

Second, we demonstrate that the framing attack may pursue perturbation in
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Figure 4.3: DC simulations with the 14-bus network: 1,000 Monte Carlo runs. The
adversary meters are (2, 3), (3, 4), and (4, 3), and the target meters are (3, 2), (2),
(3), and (4).
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Figure 4.4: DC simulations with the 14-bus network: 1,000 Monte Carlo runs. The
adversary meters are (2, 3), (3, 4), and (4, 3), and the target meters are (3, 2), (2),
(3), and (4).

various directions by choosing a different target set. We considered the case that

the adversary controls (2, 3), (3, 4), (4, 3), (6, 12), (12, 6), and (12, 13). Note that

the adversary still cannot control any critical set, and thus a covert attack is in-

feasible. The framing attack with any of the following three different target sets

successfully perturbed the state estimate: (i) (2), (3), (4), (3, 2), (6), (12), (13),
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Figure 4.5: AC simulations with the 14-bus network: 1,000 Monte Carlo runs.
The adversary meters are (2, 3), (3, 4), and (4, 3), and the target meters are 2, 3,
4, (3, 2).

and (13, 12); (ii) (2), (3), (4), and (3, 2); (iii) (6), (12), (13), and (13, 12). For in-

stance, Fig. 4.6 shows the state estimate perturbation versus the meter SNR in the

AC simulations for the first target set. While the three target sets all resulted in

successful state estimate perturbation, each resulted in a different direction of per-

turbation. For each target set, Table 4.2 shows the three buses, whose phase angle

estimates were most significantly perturbed, and the mean perturbation of their

phase angle estimates; positive perturbation means overestimation, and negative

perturbation means underestimation. The table demonstrates that the adversary

controlling a large number of meters may adjust the direction of perturbation by

choosing a proper target set. Note that with the second target set, whose asso-

ciated critical set (i.e., the critical set contained in IA ∪ IT) isolates bus 3, the

framing attack perturbed the bus-3 phase angle estimate significantly while hav-

ing little effect on other bus phase angle estimates. This is expected because once

the target meters are successfully removed from the network, the adversary can

control all the real meter measurements that depend on the bus-3 phase angle.

The similar effect can be observed for the framing attack with the third target

120

135



25 30 35 40 45 50
0

1

2

3

4

5

State estimate error (degree). False alarm rate = 0.04.

Meter SNR (dB)

S
ta

te
es

ti
m

a
te

er
ro

r
(d

eg
re

e)

 

 
No attack
Conservative
Framing (1%)
Framing (2%)
Framing (3%)

Figure 4.6: AC simulations with the 14-bus network: 1,000 Monte Carlo runs.
The adversary meters are (2, 3), (3, 4), (4, 3), (6, 12), (12, 6), and (12, 13), and the
target meters are 2, 3, 4, (3, 2), 6, 12, 13, and (13, 12).

Table 4.2: The three buses whose phase angles are most significantly perturbed by
each attack: AC simulations, 1,000 Monte Carlo runs, SNR = 46dB.

(2), (3), (4), (3, 2),

(6), (12), (13), (13, 12)

(2), (3)

(4), (3, 2)

(6), (12),

(13), (13, 12)

1) bus 12: 2.075◦

2) bus 3: 0.272◦

3) bus 14: −0.180◦

1) bus 3: −2.183◦
2) bus 14: 0.182◦

3) bus 9: 0.168◦

1) bus 12: 2.878◦

2) bus 14: 0.005◦

3) bus 9: 0.004◦

set, whose associated cut isolates bus 12. On the other hand, for the first target

set, once the target meters are removed, the adversary controls all the real meter

measurements that depend on the bus-3 phase angle or the bus-12 phase angle.

In this case, the framing attack, constructed by the QCQP framework in (4.17),

perturbed both bus-3 and bus-12 phase angle estimates.
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Figure 4.7: AC simulations with the 118-bus network: 250 Monte Carlo runs. The
adversary meters are (20, 21), (21, 20), and (21, 22), and the target meters are (20),
(21), (22), and (22, 21).

4.6.3 Simulation Results with 118-Bus Network

Through the simulations with the 118-bus network, we aim to demonstrate the

effect of the framing attack on a larger network. We considered the scenario where

the adversary controls (20, 21), (21, 20), and (21, 22), and the target meters are

(20), (21), (22), and (22, 21); i.e., the set of the adversary meters and the target

meters is the critical set associated with the cut isolating the bus 21 from the rest of

the network. Fig. 4.7 shows the state estimate errors under the non-attack scenario

and the framing attacks with different attack magnitudes in the AC simulations.

The plots imply that the framing attack successfully perturbs the state estimate,

and thus its adversarial effect persists in a larger network.
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4.7 Proof of Theorem 4.5.1

Let S denote the set of sequences of meter removals that can possibly happen

when the noiseless version of bad data processing is executed on H1∆x: i.e.,

(a1, . . . , aM) ∈ S if and only if some decisions under tie situations may result in

the removal of the meters {a1, . . . , aM} in the order of a1, . . . , aM . The cardinality

of S can be greater than 1 since different decisions under tie situations may result

in different sequences of meter removals.

For any sequence (a1, . . . , aM) ∈ S, the existence of such y—as described in the

condition—implies that if all the meters in the sequence are removed, the remaining

part of H1∆x, denoted by H
(M)
1 ∆x, is equal to H(M)y, where H

(M)
1 and H(M) are

obtained from H1 and H respectively, by removing the rows corresponding to all

meters in the sequence.

Now, consider running the bad data test onHx+H1∆x+e. The equation (4.25)

implies that the residue vector in each iteration only depends on H1∆x + e. In

addition, as σ2 decreases to zero, the results of bad data detection and identification

heavily depend onH1∆x, and thus the sequence of removed meters becomes highly

likely to be in S. Formally,

lim
σ2→0

Pr((a1, . . . , aN) ∈ S) = 1, (4.29)

where (a1, . . . , aN) is a random sequence of meters removed by the bad data test.

Let H(N) and e(N) denote the random matrix and vector obtained from H and e

respectively by removing the rows corresponding to {a1, . . . , aN}.

The event {(a1, . . . , aN) ∈ S} implies that H
(N)
1 ∆x = H(N)y, and thus

z̄(N) = (H(N)x+ e(N)) +H
(N)
1 ∆x = (H(N)x+ e(N)) +H(N)y. (4.30)
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Therefore,

lim
σ2→0

Pr(z̄(N) = (H(N)x+ e(N)) +H(N)y) = 1. (4.31)

Note that replacing the attack vectorH1∆x withH1η∆x simply changes the above

to

lim
σ2→0

Pr(z̄(N) = (H(N)x+ e(N)) +H(N)ηy) = 1. (4.32)

Now, consider running the bad data test over Hx+H2∆x+ e; this is the case

when the framing attack is launched with the partition I2. First, note that

H∆x = H1∆x+H2∆x. (4.33)

Therefore, running the bad data test on Hx+H2∆x+ e is equivalent to running

it on H(x+∆x)−H1∆x+ e.

Suppose we run the noiseless version of the bad data processing on −H1∆x.

The set of sequences of meter removals that can possibly happen is equivalent to

S, because the sign change only flips the signs of residue entries; it does not affect

their absolute values, which are the statistics used for detection and identification

of bad data entries. Furthermore, it can be easily seen that the final state estimate

is always equal to −y regardless of whatever decisions are made under the tie

situations.

Now, consider again running the bad data test on H(x + ∆x) − H1∆x + e,

which is equivalent to Hx+H2∆x+ e. In exactly the same manner as we derived

(4.31), we can derive the following:

lim
σ2→0

Pr(z̄(N) = H(N)(x+∆x) + e(N) +H(N)(−y)) = 1, (4.34)

or equivalently,

lim
σ2→0

Pr(z̄(N) = H(N)x+ e(N) +H(N)(∆x− y)) = 1. (4.35)
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When the attack vector H2∆x is scaled by η (i.e., a = H2η∆x), repeating the

same steps as above, we can easily derive the following:

lim
σ2→0

Pr(z̄(N) = H(N)x+ e(N) +H(N)η(∆x− y)) = 1. (4.36)

Therefore, the proof is complete.
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CHAPTER 5

CONCLUSIONS

In this dissertation, we studied attacks and countermeasures in communica-

tions and power networks. Specifically, stepping-stone attacks in communications

networks and data attacks in power networks were considered.

Although the attack framework varied significantly depending on the network

type and the adversary’s goal, there were some common observations. In partic-

ular, it was commonly observed in all attack problems that an adversary having

enough control on network operations can achieve its goal while hiding its presence.

Therefore, a challenging task for a network administrator is to find an affordable

protection strategy that can prevent such undetectable attacks. The main contri-

bution of dissertation was to provide conditions on the adversary’s ability under

which attacks can be detected, build network protection strategies based on the

detectability condition, and study what attacks can achieve if a network is not

secured properly.

In the following sections, we provide concluding remarks for each topic and

comments for future works.

5.1 Detection of Information Flows

In Chapter 2, we have studied timing-based detection of information flows in a

network. We formulate flow detection as a binary composite hypothesis testing

problem and present a detector that requires neither a parametric model nor a

training data set. The detector requires a constant memory, and it has linear

computational complexity with respect to the sample size. The simulations with
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real-world TCP and VoIP traces demonstrate that the proposed detector is superior

to the benchmark passive detectors and more suitable for the nonparametric and

unsupervised setting.

The test results with the real-world traces suggest that the proposed detector

may perform well in a more practical setting. Nevertheless, as all other passive

detectors, our detector has a fundamental limit that it cannot detect the flow if the

presence of the flow generates no correlation between the timing measurements at

all.

5.2 Topology Attack of a Power Grid

In Chapter 3, we have considered undetectable malicious data attack aimed at

creating a false topology at the control center. We obtain a necessary and sufficient

condition for an attack launched by a strong attacker to be undetectable. We also

present a class of undetectable line removal attacks that can be launched by weak

attackers with only local information. Finally, we present a countermeasure against

strong attackers by protecting a subset of meters.

Some of the results presented in Chapter 3 are obtained under strong conditions.

Here, we mention several of such limitations as pointers for further study. First, the

DC model assumed in Section 3.3 makes the results valid only near the operating

point. It has been demonstrated in [39] that the DC model tends to exaggerate

the effect of state attacks, and the nonlinear state estimator has the ability to

significantly reduce the attacks’ impact on the state estimate. Obtaining conditions

for undetectable topology attacks under the AC model is of considerable interest.

127

142



Second, we have focused mostly on state-preserving topology attacks. Even

though such attacks are optimal under certain scenarios, to understand the full

implication of topology attacks, it is necessary to consider attacks that affect both

topology and states.

Finally, we consider only one particular form of countermeasure, namely im-

plementing authentication at a subset of meters. Other mechanisms should be

studied, including one with more sophisticated bad data detection and those tak-

ing into accounts of system dynamics.

5.3 Data Framing Attack on State Estimation

In Chapter 4, we have presented the data framing attack on power system state

estimation. Controlling only a half of a critical set, the data framing attack can

perturb the state estimate by an arbitrary degree. A theoretical justification was

provided, and numerical experiments demonstrated the efficacy of the framing

attack.

Our results indicate that most known countermeasures, that are aimed at

merely preventing covert state attacks, are not sufficient for protection against the

attacks aimed at state perturbation. In designing countermeasures, the possibility

of the framing attack needs to be taken into account.

One important direction for future work is to find an easily verifiable necessary

condition for the framing attack to succeed with given adversary meters. Such a

condition is essential for designing a countermeasure.

128

143



BIBLIOGRAPHY

[1] D. Donoho, A. Flesia, U. Shankar, V. Paxson, J. Coit, and S. Staniford, “Mul-
tiscale stepping-stone detection: Detecting pairs of jittered interactive streams
by exploiting maximum tolerable delay,” in 5th International Symposium on
Recent Advances in Intrusion Detection, LNCS vol. 2516, Zurich, Switzerland,
Oct 2002.

[2] X. Wang and D. Reeves, “Robust correlation of encrypted attack traffic
through stepping stones by manipulation of inter-packet delays,” in Proc. of
the 2003 ACM Conference on Computer and Communications Security, 2003,
pp. 20–29.

[3] P. Peng, P. Ning, D. Reeves, and X. Wang, “Active Timing-Based Correlation
of Perturbed Traffic Flows with Chaff Packets,” in Proc. 25th IEEE Interna-
tional Conference on Distributed Computing Systems Workshops, Columbus,
OH, June 2005, pp. 107–113.

[4] X. Wang, S. Chen, and S. Jajodia, “Tracking anonymous peer-to-peer voip
calls on the internet,” in Proc. of the 2005 ACM Conference on Computer
and Communications Security, Alexandra, VA, nov 2005.

[5] Y. H. Park and D. S. Reeves, “Adaptive Watermarking Against Deliberate
Random Delay for Attack Attribution Through Stepping Stones,” in Proc.
of the Ninth International Conference on Information and Communications
Security (ICICS 2007), dec 2007.

[6] Y. J. Pyun, Y. H. Park, X. Wang, D. Reeves, and P. Ning, “Tracing Traffic
through Intermediate Hosts that Repacketize Flows,” in INFOCOM 2007.
26th IEEE International Conference on Computer Communications. IEEE,
may 2007.

[7] D. Ramsbrock, X. Wang, and X. Jiang, “A First Step towards Live Botmaster
Traceback,” in Proceedings of the 11th international symposium on Recent
Advances in Intrusion Detection, Cambridge, MA, 2008.

[8] A. Houmansadr, N. Kiyavash, and N. Borisov, “RAINBOW: A Robust And
Invisible Non-Blind Watermark for Network Flows,” in Proc. of the 16th An-
nual Network and Distributed System Security Symposium, San Diego, CA,
Feb 2009.

129

144



[9] A. Houmansadr and N. Borisov, “SWIRL: A Scalable Watermark to Detect
Correlated Network Flows,” in Proc. of the 18th Annual Network and Dis-
tributed System Security Symposium, San Diego, CA, Feb 2011.

[10] X. Wang and D. S. Reeves, “Robust Correlation of Encrypted Attack Traf-
fic through Stepping Stones by Flow Watermarking,” IEEE Transactions on
Dependable and Secure Computing, vol. 8, no. 3, pp. 434 –449, may-june 2011.

[11] L. Zhang, A. Persaud, A. Johnson, and Y. Guan, “Stepping Stone Attack
Attribution in Non-Cooperative IP Networks,” Iowa State University, Tech.
Rep. TR-2005-02-1, Feb. 2005.

[12] ——, “Detection of Stepping Stone Attack under Delay and Chaff Perturba-
tions,” in Proc. of The 25th IEEE International Performance Computing and
Communications Conference, Phoenix, AZ, Apr. 2006.

[13] A. Blum, D. Song, and S. Venkataraman, “Detection of Interactive Stepping
Stones: Algorithms and Confidence Bounds,” in 7th International Symposium
on Recent Advance in Intrusion Detection (RAID), Sophia Antipolis, French
Riviera, France, September 2004.

[14] T. He and L. Tong, “Detection of Information Flows,” IEEE Transactions on
Information Theory, vol. 54, pp. 4925–4945, Nov. 2008.

[15] B. Coskun and N. Memon, “Efficient Detection of Delay-Constrained Relay
Nodes,” in Proceedings of the 2007 Annual Computer Security Applications
Conference, dec 2007, pp. 353–362.

[16] ——, “Online Sketching of Network Flows for Real-Time Stepping-Stone De-
tection,” in Proceedings of the 2009 Annual Computer Security Applications
Conference, Washington, DC, 2009, pp. 473–483.

[17] V. Paxson and S. Floyd, “Wide-Area Traffic: The Failure of Poisson Mod-
eling,” IEEE/ACM Transactions on Networking, vol. 3, no. 3, pp. 226–244,
June 1995.

[18] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state
estimation in electric power grids,” in Proceedings of the 16th ACM conference
on Computer and communications security, 2009, pp. 21–32.

[19] R. B. Bobba, K. M. Rogers, Q. Wang, H. Khurana, K. Nahrstedt, and T. J.
Overbye, “Detecting false data injection attacks on dc state estimation,”

130

145



in First Workshop on Secure Control Systems,CPSWEEK 2010, Stockholm,
Sweeden, Apr 2010.

[20] H. Sandberg, A. Teixeira, and K. H. Johansson, “On security indices for
state estimators in power networks,” in First Workshop on Secure Control
Systems,CPSWEEK 2010, Stockholm, Sweeden, Apr 2010.

[21] G. Dán and H. Sandberg, “Stealth attacks and protection schemes for state es-
timators in power systems,” in Proc. IEEE 2010 SmartGridComm, Gaithers-
burg, MD, USA., Oct 2010.

[22] O. Vukovic, K. C. Sou, G. Dan, and H. Sandberg, “Network-layer protection
schemes against stealth attacks on state estimators in power systems,” in
Smart Grid Communications (SmartGridComm), 2011 IEEE International
Conference on, oct. 2011, pp. 184 –189.

[23] O. Kosut, L. Jia, R. J. Thomas, and L. Tong, “Malicious data attacks on
smart grid state estimation: attack strategies and countermeasures,” in Proc.
IEEE 2010 SmartGridComm, Gaithersburg, MD, USA, Oct 2010.

[24] ——, “Malicious data attacks on the smart grid,” IEEE Transactions on
Smart Grid, vol. 2, no. 4, pp. 645 –658, dec. 2011.

[25] A. Monticelli and F. F. Wu, “Network observability: Theory,” IEEE Trans.
Power Apparatus and Systems, vol. PAS-104, no. 5, pp. 1042–1048, May 1985.

[26] G. R. Krumpholz, K. A. Clements, and P. W. Davis, “Power system observ-
ability: a practical algorithm using network topology,” IEEE Trans. Power
Apparatus and Systems, vol. 99, no. 4, pp. 1534–1542, July 1980.

[27] K. Clements and P. Davis, “Detection and identification of topology errors in
electric power systems,” IEEE Transactions on Power Systems, vol. 3, no. 4,
pp. 1748 –1753, nov 1988.

[28] F. F. Wu and W. E. Liu, “Detection of topology errors by state estimation,”
IEEE Trans. Power Systems, vol. 4, no. 1, pp. 176–183, Feb 1989.

[29] I. Costa and J. Leao, “Identification of topology errors in power system state
estimation,” IEEE Transactions on Power Systems, vol. 8, no. 4, pp. 1531
–1538, nov 1993.

131

146



[30] A. Monticelli, “Modeling circuit breakers in weighted least squares state esti-
mation,” IEEE Transactions on Power Systems, vol. 8, no. 3, pp. 1143 –1149,
aug 1993.

[31] A. Abur, H. Kim, and M. Celik, “Identifying the unknown circuit breaker
statuses in power networks,” IEEE Transactions on Power Systems, vol. 10,
no. 4, pp. 2029 –2037, nov. 1995.

[32] L. Mili, G. Steeno, F. Dobraca, and D. French, “A robust estimation method
for topology error identification,” IEEE Transactions on Power Systems,
vol. 14, no. 4, pp. 1469 –1476, nov 1999.

[33] E. Lourenco, A. Costa, and K. Clements, “Bayesian-based hypothesis test-
ing for topology error identification in generalized state estimation,” IEEE
Transactions on Power Systems, vol. 19, no. 2, pp. 1206 – 1215, may 2004.

[34] A. Jaen, P. Romero, and A. Exposito, “Substation data validation by a lo-
cal three-phase generalized state estimator,” IEEE Transactions on Power
Systems, vol. 20, no. 1, pp. 264 – 271, feb. 2005.

[35] F. Vosgerau, A. Simoes Costa, K. Clements, and E. Lourenco, “Power sys-
tem state and topology coestimation,” in Bulk Power System Dynamics and
Control (iREP) - VIII (iREP), 2010 iREP Symposium, aug. 2010, pp. 1 –6.

[36] A. L. Ott, “Experience with pjm market operation, system design, and im-
plementation,” IEEE Trans. Power Systems, vol. 18, no. 2, pp. 528–534, May
2003.

[37] L. Xie, Y. Mo, and B. Sinopoli, “False data injection attacks in electricity
markets,” in Proc. IEEE 2010 SmartGridComm, Gaithersburg, MD, USA.,
Oct 2010.

[38] L. Jia, R. J. Thomas, and L. Tong, “Malicious data attack on real-time elec-
tricity market,” in Proc. 2011 IEEE Intl. Conf. Acoust. Speech & Sig. Proc.
(ICASSP), Prague, Czech Republic, May 2011.

[39] ——, “On the Nonlinearity Effects on Malicious Data Attack on Power Sys-
tem,” in Power and Energy Society General Meeting, 2012 IEEE, july 2012.

[40] E. Handschin, F. C. Schweppe, J. Kohlas, and A. Fiechter, “Bad data anal-
ysis for power system state estimation,” IEEE Trans. Power Apparatus and
Systems, vol. PAS-94, no. 2, pp. 329–337, Mar/Apr 1975.

132

147



[41] T. Van Cutsem, M. Ribbens-Pavella, and L. Mili, “Bad data identification
methods in power system state estimation-a comparative study,” IEEE Trans-
actions on Power Apparatus and Systems, vol. 104, no. 11, pp. 3037–3049,
1985.

[42] A. Monticelli and F. F. Wu, “Network observability: Identification of observ-
able islands and measurement placement,” IEEE Trans. Power Apparatus and
Systems, vol. PAS-104, no. 5, pp. 1035–1041, May 1985.

[43] T. Kim and H. Poor, “Strategic protection against data injection attacks on
power grids,” IEEE Transactions on Smart Grid, vol. 2, no. 2, pp. 326 –333,
june 2011.

[44] S. Bi and Y. Zhang, “Defending mechanisms against false-data injection at-
tacks in the power system state estimation,” in 2011 IEEE GLOBECOM
Workshops, Houston, TX, USA., Dec 2011.

[45] A. Giani, E. Bitar, M. Garcia, M. McQueen, P. Khargonekar, and K. Poolla,
“Smart grid data integrity attacks: characterizations and countermeasures,”
in 2011 IEEE International Conference on Smart Grid Communications
(SmartGridComm), Oct 2011, pp. 232–237.

[46] J. Kim and L. Tong, “On topology attack of a smart grid: undetectable attacks
and countermeasures,” IEEE Journal on Selected Areas in Communications,
vol. 31, no. 7, July 2013.

[47] K. Clements and P. Davis, “Multiple bad data detectability and identifiability:
A geometric approach,” IEEE Transactions on Power Delivery, vol. 1, no. 3,
pp. 355–360, 1986.

[48] G. Korres and G. Contaxis, “Identification and updating of minimally depen-
dent sets of measurements in state estimation,” IEEE Transactions on Power
Systems, vol. 6, no. 3, pp. 999–1005, 1991.

[49] A. Monticelli and A. Garcia, “Reliable bad data processing for real-time state
estimation,” IEEE Transactions on Power Apparatus and Systems, vol. 102,
no. 5, pp. 1126–1139, 1983.

[50] L. Mili, T. Van Cutsem, and M. Ribbens-Pavella, “Hypothesis testing identi-
fication: A new method for bad data analysis in power system state estima-
tion,” IEEE Transactions on Power Apparatus and Systems, vol. 103, no. 11,
pp. 3239–3252, 1984.

133

148



[51] A. Abur and A. G. Expósito, Power System State Estimation: Theory and
Implementation. CRC, 2000.

[52] A. Monticelli, State Estimation in Electric Power Systems: A Generalized
Approach (Power Electronics and Power Systems). Springer US, 1999.

[53] W. W. Kotiuga and M. Vidyasagar, “Bad data rejection properties of
weughted least absolute value techniques applied to static state estimation,”
IEEE Transactions on Power Apparatus and Systems, vol. PAS-101, no. 4,
pp. 844–853, 1982.

[54] A. Abur and M. Celik, “A fast algorithm for the weighted least absolute value
state estimation [for power systems],” IEEE Transactions on Power Systems,
vol. 6, no. 1, pp. 1–8, 1991.

[55] M. Celik and A. Abur, “A robust wlav state estimator using transformations,”
IEEE Transactions on Power Systems, vol. 7, no. 1, pp. 106–113, 1992.

[56] H. Singh and F. Alvarado, “Weighted least absolute value state estimation
using interior point methods,” IEEE Transactions on Power Systems, vol. 9,
no. 3, pp. 1478–1484, 1994.

[57] L. Mili, M. Cheniae, and P. Rousseeuw, “Robust state estimation of electric
power systems,” IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, vol. 41, no. 5, pp. 349–358, 1994.

[58] M. Cheniae, L. Mili, and P. Rousseeuw, “Identification of multiple interacting
bad data via power system decomposition,” IEEE Transactions on Power
Systems, vol. 11, no. 3, pp. 1555–1563, 1996.

[59] K. Morrow, E. Heine, K. Rogers, R. Bobba, and T. Overbye, “Topology per-
turbation for detecting malicious data injection,” in 2012 45th Hawaii Inter-
national Conference on System Science (HICSS), Jan 2012, pp. 2104–2113.

[60] A. Tajer, S. Kar, H. Poor, and S. Cui, “Distributed joint cyber attack de-
tection and state recovery in smart grids,” in 2011 IEEE International Con-
ference on Smart Grid Communications (SmartGridComm), Oct 2011, pp.
202–207.

[61] Y. Huang, H. Li, K. Campbell, and Z. Han, “Defending false data injection
attack on smart grid network using adaptive cusum test,” in 2011 45th Annual

134

149



Conference on Information Sciences and Systems (CISS), march 2011, pp. 1–
6.

[62] S. Cui, Z. Han, S. Kar, T. Kim, H. Poor, and A. Tajer, “Coordinated data-
injection attack and detection in the smart grid: A detailed look at enriching
detection solutions,” IEEE Signal Processing Magazine, vol. 29, no. 5, pp.
106–115, 2012.

[63] Y. Huang, M. Esmalifalak, H. Nguyen, R. Zheng, Z. Han, H. Li, and L. Song,
“Bad data injection in smart grid: attack and defense mechanisms,” IEEE
Communications Magazine, vol. 51, no. 1, pp. 27–33, 2013.

[64] P. Kruus, D. Sterne, R. Gopaul, M. Heyman, B. Rivera, P. Budulas, B. Luu,
T. Johnson, N. Ivanic, and G. Lawler, “In-Band Wormholes and Countermea-
sures in OLSR Networks,” in 2nd International Conference on Security and
Privacy in Communication Networks (SecureComm 2006), Baltimore, MD,
Aug. 2006.

[65] T. Chothia and K. Chatzikokolakis, “A Survey of Anonymous Peer-to-Peer
File-Sharing,” in Embedded and Ubiquitous Computing Workshops, LNCS vol.
3823, 2005, pp. 744–755.

[66] J. Ren and J. Wu, “Survey on anonymous communications in computer net-
works,” Computer Communications, vol. 33, no. 4, pp. 420–431, March 2010.

[67] ITU-T Recommendation G.114, “One way transmission time,” 2003.

[68] J. Shao, Mathematical Statistics. Springer, 2003.

[69] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the self-
similar nature of Ethernet traffic (extended version),” IEEE/ACM Transac-
tions on Networking, vol. 2, no. 1, pp. 1–15, Feb 1994.

[70] M. E. Crovella and A. Bestavros, “Self-similarity in World Wide Web traf-
fic: evidence and possible causes,” IEEE/ACM Transactions on Networking,
vol. 5, no. 6, pp. 835–846, Dec 1997.

[71] Z. Sahinoglu and S. Tekinay, “On multimedia networks: self-similar traffic
and network performance,” IEEE Communications Magazine, vol. 37, no. 1,
pp. 48 – 52, jan 1999.

135

150



[72] “Vulnerability Analysis of Energy Delivery Control Systems,” Idaho National
Laboratory, September 2011, INL/EXT-10-18381.

[73] C. Paar and J. Pelzl, Understanding Cryptography: A Textbook for Students
and Practitioners. Springer, 2010.

[74] O. Alsac, N. Vempati, B. Stott, and A. Monticelli, “Generalized state estima-
tion,” IEEE Transactions on Power Systems, vol. 13, no. 3, pp. 1069 –1075,
aug 1998.

[75] R. Christensen, Plane answers to complex questions: the theory of linear mod-
els. Springer, 2011.

[76] “Accuracy of Digital Electricity Meters,” Electric Power Research Istitute
white paper, May 2010.

[77] D. R. Karger and C. Stein, “A new approach to the minimum cut problem,”
Journal of the ACM, vol. 43, no. 4, pp. 601–640, Jul. 1996.

[78] “Power Systems Test Case Archive.” [Online]. Available:
http://www.ee.washington.edu/research/pstca/

136

151




